The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A326007 G.f.: Sum_{n>=0} (n+1)*(n+2)/2 * x^n * ((1+x)^n + 1)^n / (1 + x*(1+x)^n)^(n+3). 3
 1, 3, 9, 22, 81, 285, 1339, 6264, 33567, 186811, 1116105, 7001244, 46150265, 318158826, 2286494076, 17088720336, 132492477111, 1063527470481, 8822541504319, 75512660179788, 665878308902676, 6041491458457319, 56330651731617333, 539160888285121116, 5292067580412471801, 53218232521845617886, 547833354998854396224, 5768212264434778469998, 62074688689939991197548 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS More generally, the following sums are equal: (1) Sum_{n>=0} binomial(n+k-1, n) * r^n * (q^n + p)^n / (1 + p*q^n*r)^(n+k), (2) Sum_{n>=0} binomial(n+k-1, n) * r^n * (q^n - p)^n / (1 - p*q^n*r)^(n+k), for any fixed integer k; here, k = 3 and q = (1+x), p = 1, r = x. See other examples for k = 1 (A323680), k = 2 (A326006), k = 4 (A326008). LINKS Table of n, a(n) for n=0..28. FORMULA G.f.: Sum_{n>=0} (n+1)*(n+2)/2 * x^n * ((1+x)^n + 1)^n / (1 + x*(1+x)^n)^(n+3). G.f.: Sum_{n>=0} (n+1)*(n+2)/2 * x^n * ((1+x)^n - 1)^n / (1 - x*(1+x)^n)^(n+3). G.f.: Sum_{n>=0} (n+1)*(n+2)/2 * x^n * Sum_{k=0..n} binomial(n,k) * ( (1+x)^n - (1+x)^k )^(n-k). G.f.: Sum_{n>=0} (n+1)*(n+2)/2 * x^n * Sum_{k=0..n} binomial(n,k) * ( (1+x)^n + (1+x)^k )^(n-k) * (-1)^k. G.f.: Sum_{n>=0} (n+1)*(n+2)/2 * x^n * Sum_{k=0..n} binomial(n,k) * Sum_{j=0..n-k} (-1)^j * binomial(n-k,j) * (1 + x)^((n-j)*(n-k)). FORMULAS INVOLVING TERMS. a(n) = Sum_{i=0..n} (n-i+1)*(n-i+2)/2 * Sum_{j=0..n-i} Sum_{k=0..n-i-j} (-1)^k * binomial(n-i,j) * binomial(n-i-j,k) * binomial((n-i-j)*(n-i-k),i). a(n) = Sum_{i=0..n} (n-i+1)*(n-i+2)/2 * Sum_{j=0..n-i} Sum_{k=0..n-i-j} binomial((n-i-j)*(n-i-k),i) * (-1)^j * (n-i)! / ((n-i-j-k)!*j!*k!). EXAMPLE G.f.: A(x) = 1 + 3*x + 9*x^2 + 22*x^3 + 81*x^4 + 285*x^5 + 1339*x^6 + 6264*x^7 + 33567*x^8 + 186811*x^9 + 1116105*x^10 + 7001244*x^11 + 46150265*x^12 + ... such that A(x) = 1/(1+x)^3 + 3*x*((1+x) + 1)/(1 + x*(1+x))^4 + 6*x^2*((1+x)^2 + 1)^2/(1 + x*(1+x)^2)^5 + 10*x^3*((1+x)^3 + 1)^3/(1 + x*(1+x)^3)^6 + 15*x^4*((1+x)^4 + 1)^4/(1 + x*(1+x)^4)^7 + 21*x^5*((1+x)^5 + 1)^5/(1 + x*(1+x)^5)^8 + 28*x^6*((1+x)^6 + 1)^6/(1 + x*(1+x)^6)^9 + 36*x^7*((1+x)^7 + 1)^7/(1 + x*(1+x)^7)^10 + ... also, A(x) = 1/(1-x)^3 + 3*x*((1+x) - 1)/(1 - x*(1+x))^4 + 6*x^2*((1+x)^2 - 1)^2/(1 - x*(1+x)^2)^5 + 10*x^3*((1+x)^3 - 1)^3/(1 - x*(1+x)^3)^6 + 15*x^4*((1+x)^4 - 1)^4/(1 - x*(1+x)^4)^7 + 21*x^5*((1+x)^5 - 1)^5/(1 - x*(1+x)^5)^8 + 28*x^6*((1+x)^6 - 1)^6/(1 - x*(1+x)^6)^9 + 36*x^7*((1+x)^7 - 1)^7/(1 - x*(1+x)^7)^10 + ... PROG (PARI) {a(n) = my(A = sum(m=0, n+1, (m+1)*(m+2)/2 * x^m*((1+x +x*O(x^n) )^m - 1)^m/(1 - x*(1+x +x*O(x^n) )^m )^(m+3) )); polcoeff(A, n)} for(n=0, 35, print1(a(n), ", ")) (PARI) {a(n) = sum(i=0, n, (n-i+1)*(n-i+2)/2 * sum(j=0, n-i, sum(k=0, n-i-j, (-1)^k * binomial(n-i, j) * binomial(n-i-j, k) * binomial((n-i-j)*(n-i-k), i) )))} for(n=0, 35, print1(a(n), ", ")) (PARI) {a(n) = sum(i=0, n, (n-i+1)*(n-i+2)/2 * sum(j=0, n-i, sum(k=0, n-i-j, (-1)^j * binomial((n-i-j)*(n-i-k), i) * (n-i)! / ((n-i-j-k)!*j!*k!) )))} for(n=0, 35, print1(a(n), ", ")) CROSSREFS Cf. A323680, A326006, A326008. Sequence in context: A203454 A197666 A146009 * A272559 A270991 A029512 Adjacent sequences: A326004 A326005 A326006 * A326008 A326009 A326010 KEYWORD nonn AUTHOR Paul D. Hanna, Jun 02 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 5 21:07 EST 2023. Contains 367594 sequences. (Running on oeis4.)