login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A326007
G.f.: Sum_{n>=0} (n+1)*(n+2)/2 * x^n * ((1+x)^n + 1)^n / (1 + x*(1+x)^n)^(n+3).
3
1, 3, 9, 22, 81, 285, 1339, 6264, 33567, 186811, 1116105, 7001244, 46150265, 318158826, 2286494076, 17088720336, 132492477111, 1063527470481, 8822541504319, 75512660179788, 665878308902676, 6041491458457319, 56330651731617333, 539160888285121116, 5292067580412471801, 53218232521845617886, 547833354998854396224, 5768212264434778469998, 62074688689939991197548
OFFSET
0,2
COMMENTS
More generally, the following sums are equal:
(1) Sum_{n>=0} binomial(n+k-1, n) * r^n * (q^n + p)^n / (1 + p*q^n*r)^(n+k),
(2) Sum_{n>=0} binomial(n+k-1, n) * r^n * (q^n - p)^n / (1 - p*q^n*r)^(n+k),
for any fixed integer k; here, k = 3 and q = (1+x), p = 1, r = x. See other examples for k = 1 (A323680), k = 2 (A326006), k = 4 (A326008).
FORMULA
G.f.: Sum_{n>=0} (n+1)*(n+2)/2 * x^n * ((1+x)^n + 1)^n / (1 + x*(1+x)^n)^(n+3).
G.f.: Sum_{n>=0} (n+1)*(n+2)/2 * x^n * ((1+x)^n - 1)^n / (1 - x*(1+x)^n)^(n+3).
G.f.: Sum_{n>=0} (n+1)*(n+2)/2 * x^n * Sum_{k=0..n} binomial(n,k) * ( (1+x)^n - (1+x)^k )^(n-k).
G.f.: Sum_{n>=0} (n+1)*(n+2)/2 * x^n * Sum_{k=0..n} binomial(n,k) * ( (1+x)^n + (1+x)^k )^(n-k) * (-1)^k.
G.f.: Sum_{n>=0} (n+1)*(n+2)/2 * x^n * Sum_{k=0..n} binomial(n,k) * Sum_{j=0..n-k} (-1)^j * binomial(n-k,j) * (1 + x)^((n-j)*(n-k)).
FORMULAS INVOLVING TERMS.
a(n) = Sum_{i=0..n} (n-i+1)*(n-i+2)/2 * Sum_{j=0..n-i} Sum_{k=0..n-i-j} (-1)^k * binomial(n-i,j) * binomial(n-i-j,k) * binomial((n-i-j)*(n-i-k),i).
a(n) = Sum_{i=0..n} (n-i+1)*(n-i+2)/2 * Sum_{j=0..n-i} Sum_{k=0..n-i-j} binomial((n-i-j)*(n-i-k),i) * (-1)^j * (n-i)! / ((n-i-j-k)!*j!*k!).
EXAMPLE
G.f.: A(x) = 1 + 3*x + 9*x^2 + 22*x^3 + 81*x^4 + 285*x^5 + 1339*x^6 + 6264*x^7 + 33567*x^8 + 186811*x^9 + 1116105*x^10 + 7001244*x^11 + 46150265*x^12 + ...
such that
A(x) = 1/(1+x)^3 + 3*x*((1+x) + 1)/(1 + x*(1+x))^4 + 6*x^2*((1+x)^2 + 1)^2/(1 + x*(1+x)^2)^5 + 10*x^3*((1+x)^3 + 1)^3/(1 + x*(1+x)^3)^6 + 15*x^4*((1+x)^4 + 1)^4/(1 + x*(1+x)^4)^7 + 21*x^5*((1+x)^5 + 1)^5/(1 + x*(1+x)^5)^8 + 28*x^6*((1+x)^6 + 1)^6/(1 + x*(1+x)^6)^9 + 36*x^7*((1+x)^7 + 1)^7/(1 + x*(1+x)^7)^10 + ...
also,
A(x) = 1/(1-x)^3 + 3*x*((1+x) - 1)/(1 - x*(1+x))^4 + 6*x^2*((1+x)^2 - 1)^2/(1 - x*(1+x)^2)^5 + 10*x^3*((1+x)^3 - 1)^3/(1 - x*(1+x)^3)^6 + 15*x^4*((1+x)^4 - 1)^4/(1 - x*(1+x)^4)^7 + 21*x^5*((1+x)^5 - 1)^5/(1 - x*(1+x)^5)^8 + 28*x^6*((1+x)^6 - 1)^6/(1 - x*(1+x)^6)^9 + 36*x^7*((1+x)^7 - 1)^7/(1 - x*(1+x)^7)^10 + ...
PROG
(PARI) {a(n) = my(A = sum(m=0, n+1, (m+1)*(m+2)/2 * x^m*((1+x +x*O(x^n) )^m - 1)^m/(1 - x*(1+x +x*O(x^n) )^m )^(m+3) )); polcoeff(A, n)}
for(n=0, 35, print1(a(n), ", "))
(PARI) {a(n) = sum(i=0, n, (n-i+1)*(n-i+2)/2 * sum(j=0, n-i, sum(k=0, n-i-j, (-1)^k * binomial(n-i, j) * binomial(n-i-j, k) * binomial((n-i-j)*(n-i-k), i) )))}
for(n=0, 35, print1(a(n), ", "))
(PARI) {a(n) = sum(i=0, n, (n-i+1)*(n-i+2)/2 * sum(j=0, n-i, sum(k=0, n-i-j, (-1)^j * binomial((n-i-j)*(n-i-k), i) * (n-i)! / ((n-i-j-k)!*j!*k!) )))}
for(n=0, 35, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 02 2019
STATUS
approved