login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A326010
G.f. A(x) satisfies: 0 = Sum_{n>=1} n * ((1+x)^n - A(x))^n.
2
1, 1, 2, 20, 282, 5134, 112053, 2823119, 80202565, 2529045393, 87523776013, 3295995672161, 134155142687732, 5869278171065418, 274718037952537674, 13701118397652347442, 725505704889894172448, 40658992718689480518864, 2404662897766073643050293, 149692182669205551972626617, 9784886698908632846522031701
OFFSET
0,3
LINKS
FORMULA
G.f. A(x) satisfies:
(1) 0 = Sum_{n>=1} n * ((1+x)^n - A(x))^n.
(2) A(x) = P(x)/Q(x) where
P(x) = Sum_{n>=0} n * (1+x)^(n^2) / (1 + (1+x)^n*A(x))^(n+2),
Q(x) = Sum_{n>=0} (1+x)^(n*(n+1)) / (1 + (1+x)^n*A(x))^(n+2).
(3) A'(x) = P(x)/Q(x) where
P(x) = Sum_{n>=0} (n+1)^3 * ((1+x)^(n+1) - A(x))^n * (1+x)^n,
Q(x) = Sum_{n>=0} (n+1)^2 * ((1+x)^(n+1) - A(x))^n.
a(n) ~ c * d^n * sqrt(n) * n!, where d = A317855 = 3.16108865386... and c = 0.102568345138... - Vaclav Kotesovec, Jun 05 2019
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + 20*x^3 + 282*x^4 + 5134*x^5 + 112053*x^6 + 2823119*x^7 + 80202565*x^8 + 2529045393*x^9 + 87523776013*x^10 + ...
such that
0 = ((1+x) - A(x)) + 2*((1+x)^2 - A(x))^2 + 3*((1+x)^3 - A(x))^3 + 4*((1+x)^4 - A(x))^4 + 5*((1+x)^5 - A(x))^5 + 6*((1+x)^6 - A(x))^6 + ...
The terms a(n) modulo 2 begin:
1,1,0,0,0,0,1,1,1,1,1,1,0,0,0,0,0,0,1,1,1,1,1,1,
0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,1,1,1,1,1,1,0,0,
0,0,0,0,0,0,1,1,0,0,1,1,0,0,1,1,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,1,1,1,1,
0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,1,1,1,1,
1,1,1,1,0,0,0,0,1,1,0,0,1,1,0,0,1,1,1,1,0,0,1,1,
0,0,0,0,1,1,1,1,0,0,1,1,1,1,1,1,0,0,1,1,1,1,0,0,
1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,0,0,
1,1,0,0,0,0,0,0,0, ...
PROG
(PARI) {a(n) = my(A=[1]); for(i=0, n, A=concat(A, 0); A[#A] = polcoeff( sum(m=1, #A, m* ((1+x)^m - Ser(A))^m ), #A-1)); A[n+1]}
for(n=0, 25, print1(a(n), ", "))
CROSSREFS
Sequence in context: A231499 A217364 A365771 * A363380 A349963 A246482
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 04 2019
STATUS
approved