login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A326013
a(n) = (n+1) * (3^n + 1)^n.
1
1, 8, 300, 87808, 226060880, 5189199673344, 1059339584023000000, 1920530508944313150734336, 30940855519482868628911503608064, 4436292850480330161986749628748086640640, 5670112877213289113061309258575292968750000000000, 64696388003897763308476146732369244462492297181932629786624
OFFSET
0,2
COMMENTS
More generally, the following sums are equal:
(1) Sum_{n>=0} binomial(n+k-1, n) * r^n * (p + q^n)^n,
(2) Sum_{n>=0} binomial(n+k-1, n) * r^n * q^(n^2) / (1 - p*q^n*r)^(n+k),
for any fixed integer k; here, k = 2 and p = 1, q = 3, r = x.
FORMULA
O.g.f.: Sum_{n>=0} (n+1) * (3^n + 1)^n * x^n.
O.g.f.: Sum_{n>=0} (n+1) * 3^(n^2) * x^n / (1 - 3^n*x)^(n+2).
E.g.f.: sum_{n>=0} (n+1 + 3^n*x) * 3^(n^2) * exp(3^n*x) * x^n/n!.
EXAMPLE
O.g.f.: A(x) = 1 + 8*x + 300*x^2 + 87808*x^3 + 226060880*x^4 + 5189199673344*x^5 + 1059339584023000000*x^6 + 1920530508944313150734336*x^7 + ... + (n+1) * (3^n + 1)^n*x^n + ...
such that
A(x) = 1/(1 - x)^2 + 2*3*x/(1 - 3*x)^3 + 3*3^4*x^2/(1 - 3^2*x)^4 + 4*3^9*x^3/(1 - 3^3*x)^5 + 5*3^16*x^4/(1 - 3^4*x)^6 + 6*3^25*x^5/(1 - 3^5*x)^7 + 7*3^36*x^6/(1 - 3^6*x)^8 + ... (n+1)*3^(n^2)*x^n/(1 - 3^n*x)^(n+2) + ...
PROG
(PARI) {a(n) = (n+1) * (3^n + 1)^n}
for(n=0, 15, print1(a(n), ", "))
(PARI) /* O.g.f. */
{a(n) = my(A = sum(m=0, n, (m+1) * 3^(m^2) * x^m / (1 - 3^m*x +x*O(x^n))^(m+2) )); polcoeff(A, n)}
for(n=0, 15, print1(a(n), ", "))
(PARI) /* E.g.f. */
{a(n) = my(A = sum(m=0, n, (m+1 + 3^m*x) * 3^(m^2) * exp(3^m*x +x*O(x^n)) * x^m/m! )); n!*polcoeff(A, n)}
for(n=0, 15, print1(a(n), ", "))
CROSSREFS
Cf. A202989.
Sequence in context: A202559 A232372 A264248 * A222792 A304057 A305451
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 05 2019
STATUS
approved