The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A326014 E.g.f. A(x) satisfies: 1 = Sum_{n>=0} (exp(n*x) - A(x))^n * x^n/n!. 1
 1, 1, 1, 4, 37, 376, 5851, 116348, 2654233, 73034272, 2356014871, 86009667052, 3547332820549, 164187709367696, 8421668696488867, 475395141424459636, 29395941256967070385, 1979988614183567826496, 144537864622993377619759, 11390224711130862102597980, 965536276617554529080723101, 87743847735547289888220490096 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS More generally, the following sums are equal: (1) Sum_{n>=0} (q^n + p)^n * x^n/n!, (2) Sum_{n>=0} q^(n^2) * exp(p*q^n*x) * x^n/n!; here, q = exp(x) and p = -A(x). LINKS Paul D. Hanna, Table of n, a(n) for n = 0..200 FORMULA E.g.f. A(x) = Sum_{n>=0} a(n)*x^n/n! satisfies: (1) 1 = Sum_{n>=0} (exp(n*x) - A(x))^n * x^n/n!, (2) 1 = Sum_{n>=0} exp(n^2*x - x*exp(n*x)*A(x)) * x^n/n!. EXAMPLE E.g.f.: A(x) = 1 + x + x^2/2! + 4*x^3/3! + 37*x^4/4! + 376*x^5/5! + 5851*x^6/6! + 116348*x^7/7! + 2654233*x^8/8! + 73034272*x^9/9! + 2356014871*x^10/10! + 86009667052*x^11/11! + 3547332820549*x^12/12! + 164187709367696*x^13/13! + 8421668696488867*x^14/14! + 475395141424459636*x^15/15! + ... such that 1 = 1 + (exp(x) - A(x))*x + (exp(2*x) - A(x))^2*x^2/2! + (exp(3*x) - A(x))^3*x^3/3! + (exp(4*x) - A(x))^4*x^4/4! + (exp(5*x) - A(x))^5*x^5/5! + (exp(6*x) - A(x))^6*x^6/6! + (exp(7*x) - A(x))^7*x^7/7! + ... also, 1 = exp(-x*A(x)) + exp(x - x*exp(x)*A(x))*x + exp(4*x - x*exp(2*x)*A(x))*x^2/2! + exp(9*x - x*exp(3*x)*A(x))*x^3/3! + exp(16*x - x*exp(4*x)*A(x))*x^4/4! + exp(25*x - x*exp(5*x)*A(x))*x^5/5! + exp(36*x - x*exp(6*x)*A(x))*x^6/6! + exp(49*x - x*exp(7*x)*A(x))*x^7/7! + exp(64*x - x*exp(8*x)*A(x))*x^8/8! + ... PROG (PARI) /* 1 = Sum_{n>=0} (exp(n*x) - A(x))^n * x^n/n! */ {a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0); A[#A] = polcoeff( sum(m=0, #A, (exp(m*x +x*O(x^#A)) - Ser(A))^m * x^m/m!), #A) ); n!*A[n+1]} for(n=0, 25, print1(a(n), ", ")) (PARI) /* 1 = Sum_{n>=0} exp(n^2*x - x*exp(n*x)*A(x)) * x^n/n! */ {a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0); A[#A] = polcoeff( sum(m=0, #A, exp(m^2*x - x*exp(m*x +x*O(x^#A))*Ser(A)) * x^m/m!), #A) ); n!*A[n+1]} for(n=0, 25, print1(a(n), ", ")) CROSSREFS Sequence in context: A199690 A133462 A123762 * A220914 A070768 A221630 Adjacent sequences:  A326011 A326012 A326013 * A326015 A326016 A326017 KEYWORD nonn AUTHOR Paul D. Hanna, Jun 05 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 4 13:29 EST 2021. Contains 349526 sequences. (Running on oeis4.)