login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A323677
Coefficients of x^(n*(n+2)) in Sum_{n>=0} x^n * (1 + x^n)^n / (1 + x^(n+1))^(n+1).
4
1, -2, 8, -36, 128, -288, 1166, -16048, 77328, -108780, 220440, -5900816, 44395366, -339891804, 898603106, -5623621248, 2160154604, -22569496436, 930080367404, -11435095847280, 54170773716302, -95118392809132, 264120000910222, -449060398964736, 10522002570379158, -174697886314749868, 1461399560338555304, -10156216740712605688, 35485949488006257078, -90157116358607006060, 722914685477655291098
OFFSET
0,2
COMMENTS
a(n) = A323557(n*(n+2)) for n >= 0.
LINKS
FORMULA
a(n) = [x^(n*(n+2))] Sum_{k>=0} x^k * (1 + x^k)^k / (1 + x^(k+1))^(k+1).
a(n) = [x^(n*(n+2))] Sum_{k>=0} (-x)^k * (1 - x^k)^k / (1 - x^(k+1))^(k+1).
EXAMPLE
Given the g.f. of A323557, G(x) = Sum_{n>=0} x^n * (1 + x^n)^n / (1 + x^(n+1))^(n+1), i.e.,
G(x) = 1/(1 + x) + x*(1 + x)/(1 + x^2)^2 + x^2*(1 + x^2)^2/(1 + x^3)^3 + x^3*(1 + x^3)^3/(1 + x^4)^4 + x^4*(1 + x^4)^4/(1 + x^5)^5 + x^5*(1 + x^5)^5/(1 + x^6)^6 + x^6*(1 + x^6)^6/(1 + x^7)^7 + x^7*(1 + x^7)^7/(1 + x^8)^8 + ...
and writing G(x) as a power series in x starting as
G(x) = 1 + 3*x^2 - 2*x^3 + 2*x^4 + 9*x^6 - 14*x^7 + 8*x^8 + 12*x^10 - 12*x^11 + 15*x^12 - 52*x^13 + 76*x^14 - 36*x^15 + 2*x^16 + 50*x^18 - 104*x^19 + 79*x^20 - 140*x^21 + 324*x^22 - 276*x^23 + 128*x^24 - 144*x^25 + 118*x^26 - 28*x^27 + 72*x^28 - 336*x^29 + 657*x^30 - 802*x^31 + 1184*x^32 - 1568*x^33 + 1086*x^34 - 288*x^35 + 302*x^36 - 1032*x^37 + 1212*x^38 - 480*x^39 + 142*x^40 + ...
then the coefficients of x^(n*(n+2)) in G(x), for n >= 0, form this sequence.
PROG
(PARI) {A323557(n) = my(A=sum(m=0, n, x^m * (1 + x^m +x*O(x^n))^m/(1 + x^(m+1) +x*O(x^n))^(m+1) )); polcoeff(A, n)}
a(n) = A323557(n*(n+2))
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
sign
AUTHOR
Paul D. Hanna, Feb 04 2019
STATUS
approved