login
A355102
E.g.f. A(x) satisfies A(x) = 1 + 2 * x * A(1 - exp(-x)).
3
1, 2, 8, 36, 112, -500, -10056, 24220, 2184480, -8762868, -1076904200, 13388615108, 954279034416, -32517111227484, -1095519424670888, 104108720480963940, 63376017498217152, -394143964914859213828, 17135457626785509446184, 1359360091138085321022956
OFFSET
0,2
FORMULA
a(0) = 1; a(n) = 2 * n * Sum_{k=0..n-1} (-1)^(n-k-1) * Stirling2(n-1,k) * a(k).
a(n) = 2 * n * A355093(n-1) for n>0.
PROG
(PARI) a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=2*i*sum(j=0, i-1, (-1)^(i-j-1)*stirling(i-1, j, 2)*v[j+1])); v;
CROSSREFS
Cf. A355093.
Sequence in context: A076122 A332607 A236626 * A355104 A248861 A323677
KEYWORD
sign
AUTHOR
Seiichi Manyama, Jun 19 2022
STATUS
approved