login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A355102
E.g.f. A(x) satisfies A(x) = 1 + 2 * x * A(1 - exp(-x)).
3
1, 2, 8, 36, 112, -500, -10056, 24220, 2184480, -8762868, -1076904200, 13388615108, 954279034416, -32517111227484, -1095519424670888, 104108720480963940, 63376017498217152, -394143964914859213828, 17135457626785509446184, 1359360091138085321022956
OFFSET
0,2
FORMULA
a(0) = 1; a(n) = 2 * n * Sum_{k=0..n-1} (-1)^(n-k-1) * Stirling2(n-1,k) * a(k).
a(n) = 2 * n * A355093(n-1) for n>0.
PROG
(PARI) a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=2*i*sum(j=0, i-1, (-1)^(i-j-1)*stirling(i-1, j, 2)*v[j+1])); v;
CROSSREFS
Cf. A355093.
Sequence in context: A076122 A332607 A236626 * A355104 A248861 A323677
KEYWORD
sign
AUTHOR
Seiichi Manyama, Jun 19 2022
STATUS
approved