login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A323675
G.f.: Sum_{n>=0} x^n * (x^n + i)^n / (1 + i*x^(n+1))^(n+1), where i^2 = -1.
5
1, 0, -1, 2, 2, 0, -7, -2, 8, 0, 8, 12, -9, -28, -16, 4, 2, 0, 46, 104, 39, -100, -144, 4, 16, -144, -66, 28, 72, 336, 533, 178, -496, -448, 242, 288, -298, -1032, -1212, -480, 142, 1008, 2701, 2586, -538, -2040, 198, 1868, 686, -544, -678, -2588, -6510, -7904, -4230, 2028, 9567, 14888, 7382, -10216, -14648, 4280, 21572, 15920, 3642, 0, -398, -6840, -26546, -44936, -37498, -16464, 5259, 46792, 70792, 13936, -67514, -65232, 5118, 53024, 77328, 106400, 98680, 48228, 4428, -31456, -101674, -204336, -239578, -137424, 23687, 164954, 247346, 147720, -175264, -430724, -301290
OFFSET
0,4
COMMENTS
It is remarkable that the generating function results in a power series in x with only real coefficients.
LINKS
FORMULA
G.f.: Sum_{n>=0} x^n * (x^n + i)^n / (1 + i*x^(n+1))^(n+1).
G.f.: Sum_{n>=0} x^n * (x^n - i)^n / (1 - i*x^(n+1))^(n+1).
G.f.: Sum_{n>=0} x^n * (x^n + i)^n * (1 - i*x^(n+1))^(n+1) / (1 + x^(2*n+2))^(n+1).
G.f.: Sum_{n>=0} x^n * (x^n - i)^n * (1 + i*x^(n+1))^(n+1) / (1 + x^(2*n+2))^(n+1).
EXAMPLE
G.f.: A(x) = 1 - x^2 + 2*x^3 + 2*x^4 - 7*x^6 - 2*x^7 + 8*x^8 + 8*x^10 + 12*x^11 - 9*x^12 - 28*x^13 - 16*x^14 + 4*x^15 + 2*x^16 + 46*x^18 + 104*x^19 + 39*x^20 - 100*x^21 - 144*x^22 + 4*x^23 + 16*x^24 - 144*x^25 - 66*x^26 + 28*x^27 + 72*x^28 + 336*x^29 + 533*x^30 + 178*x^31 - 496*x^32 - 448*x^33 + 242*x^34 + 288*x^35 - 298*x^36 - 1032*x^37 - 1212*x^38 - 480*x^39 + 142*x^40 + 1008*x^41 + 2701*x^42 + ...
such that
A(x) = 1/(1 + i*x) + x*(x + i)/(1 + i*x^2)^2 + x^2*(x^2 + i)^2/(1 + i*x^3)^3 + x^3*(x^3 + i)^3/(1 + i*x^4)^4 + x^4*(x^4 + i)^4/(1 + i*x^5)^5 + x^5*(x^5 + i)^5/(1 + i*x^6)^6 + x^6*(x^6 + i)^6/(1 + i*x^7)^7 + x^7*(x^7 + i)^7/(1 + i*x^8)^8 + ...
also,
A(x) = 1/(1 - i*x) + x*(x - i)/(1 - i*x^2)^2 + x^2*(x^2 - i)^2/(1 - i*x^3)^3 + x^3*(x^3 - i)^3/(1 - i*x^4)^4 + x^4*(x^4 - i)^4/(1 - i*x^5)^5 + x^5*(x^5 - i)^5/(1 - i*x^6)^6 + x^6*(x^6 - i)^6/(1 - i*x^7)^7 + x^7*(x^7 - i)^7/(1 - i*x^8)^8 + ...
ODD TERMS.
It appears that odd terms occur only at n*(n+1); the odd terms begin:
[1, -1, -7, -9, 39, 533, 2701, 9567, 5259, 23687, -531597, -6683401, -27445177, -251078037, -1245962509, -5523256133, -24464598853, ..., A323676(n), ...].
TRIANGLE FORM.
This sequence may be written as a triangle that begins
1, 0;
-1, 2, 2, 0;
-7, -2, 8, 0, 8, 12;
-9, -28, -16, 4, 2, 0, 46, 104;
39, -100, -144, 4, 16, -144, -66, 28, 72, 336;
533, 178, -496, -448, 242, 288, -298, -1032, -1212, -480, 142, 1008;
2701, 2586, -538, -2040, 198, 1868, 686, -544, -678, -2588, -6510, -7904, -4230, 2028;
9567, 14888, 7382, -10216, -14648, 4280, 21572, 15920, 3642, 0, -398, -6840, -26546, -44936, -37498, -16464;
5259, 46792, 70792, 13936, -67514, -65232, 5118, 53024, 77328, 106400, 98680, 48228, 4428, -31456, -101674, -204336, -239578, -137424;
23687, 164954, 247346, 147720, -175264, -430724, -301290, 20768, 136254, 108780, 245332, 527320, 640544, 477828, 329162, 262032, -66676, -748024, -1355778, -1299024; ...
in which the leftmost column consists only of odd integers (A323676).
PROG
(PARI) {a(n) = my(A=sum(m=0, n, x^m * (x^m + I +x*O(x^n))^m/(1 + I*x^(m+1) +x*O(x^n))^(m+1) )); polcoeff(A, n)}
for(n=0, 120, print1(a(n), ", "))
(PARI) {a(n) = my(A=sum(m=0, n, x^m * (x^m - I +x*O(x^n))^m/(1 - I*x^(m+1) +x*O(x^n))^(m+1) )); polcoeff(A, n)}
for(n=0, 120, print1(a(n), ", "))
CROSSREFS
Cf. A323676 (odd terms).
Sequence in context: A174104 A296492 A135006 * A243492 A086118 A104986
KEYWORD
sign
AUTHOR
Paul D. Hanna, Feb 10 2019
STATUS
approved