The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A324300 G.f.: Sum_{n>=0} x^n * (x^(n+1) + i)^n / (1 + i*x^(n+1))^(n+1). 7
 1, 0, -2, 3, 2, 0, -2, -14, 15, 0, -2, 22, 2, 0, -84, 33, 2, 0, -2, 38, 172, 0, -2, -508, 323, 0, -292, 54, 2, 0, -2, 1088, 444, 0, -2580, 1753, 2, 0, -628, -2396, 2, 0, -2, 86, 8142, 0, -2, -10366, 8991, 0, -1092, 102, 2, 0, -16724, -6716, 1372, 0, -2, 44844, 2, 0, -81846, 58495, 33284, 0, -2, 134, 2028, 0, -2, -127882, 2, 0, -62326, 150, 268492, 0, -2, -428606, 268541, 0, -2, 249196, 100100, 0, -3252, -26748, 2, 0, -738612, 182, 3724, 0, -157780, 1133312, 2, 0, -2517158, 1462761, 2, 0, -2, -44508, 2003576, 0, -2, 897068, 2, 0, -5332, -4625662, 2, 0, -344084, 230, 9352622, 0, -3769924, -15721720, 8097455 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS It is remarkable that the generating function results in a power series in x with only real coefficients. Odd terms occur only at n = k*(k+2) for k >= 0 (conjecture); a(n*(n+2)) = A324303(n). LINKS Paul D. Hanna, Table of n, a(n) for n = 0..10201 FORMULA G.f. A(x) is defined by the following series. (1) Sum_{n>=0} x^n * (x^(n+1) + i)^n / (1 + i*x^(n+1))^(n+1). (2) Sum_{n>=0} x^n * (x^(n+1) - i)^n / (1 - i*x^(n+1))^(n+1). (3) Sum_{n>=0} (i*x)^n * (1 - i*x^(n+1))^(2*n+1) / (1 + x^(2*n+2))^(n+1). (4) Sum_{n>=0} (-i*x)^n * (1 + i*x^(n+1))^(2*n+1) / (1 + x^(2*n+2))^(n+1). FORMULAS INVOLVING TERMS. a(n*(n+2)) = 1 (mod 2) for n >= 0. a(4*n+1) = 0 for n >= 0. a(4*n+2) < 0 for n >= 0. a(p-1) = (-1)^((p-1)/2) * 2 for odd primes p. EXAMPLE G.f.: A(x) = 1 - 2*x^2 + 3*x^3 + 2*x^4 - 2*x^6 - 14*x^7 + 15*x^8 - 2*x^10 + 22*x^11 + 2*x^12 - 84*x^14 + 33*x^15 + 2*x^16 - 2*x^18 + 38*x^19 + 172*x^20 - 2*x^22 - 508*x^23 + 323*x^24 - 292*x^26 + 54*x^27 + 2*x^28 - 2*x^30 + 1088*x^31 + 444*x^32 - 2580*x^34 + 1753*x^35 + ... such that A(x) = 1/(1+i*x) + x*(x^2+i)/(1+i*x^2)^2 + x^2*(x^3+i)^2/(1+i*x^3)^3 + x^3*(x^4+i)^3/(1+i*x^4)^4 + x^4*(x^5+i)^4/(1+i*x^5)^5 + x^5*(x^6+i)^5/(1+i*x^6)^6 + x^6*(x^7+i)^6/(1+i*x^7)^7 + x^7*(x^8+i)^7/(1+i*x^8)^8 + ... also A(x) = (1-i*x)/(1+x^2) + i*x*(1-i*x^2)^3/(1+x^4)^2 - x^2*(1-i*x^3)^5/(1+x^6)^3 - i*x^3*(1-i*x^4)^7/(1+x^8)^4 + x^4*(1-i*x^5)^9/(1+x^10)^5 + i*x^5*(1-i*x^6)^11/(1+x^12)^6 + i*x^6*(1-i*x^7)^11/(1+x^14)^7 + ... Note that the imaginary components in the above sums vanish. TRIANGLE FORM. This sequence may be written in the form of a triangle like so: 1; 0, -2, 3; 2, 0, -2, -14, 15;, 0, -2, 22, 2, 0, -84, 33; 2, 0, -2, 38, 172, 0, -2, -508, 323; 0, -292, 54, 2, 0, -2, 1088, 444, 0, -2580, 1753; 2, 0, -628, -2396, 2, 0, -2, 86, 8142, 0, -2, -10366, 8991; 0, -1092, 102, 2, 0, -16724, -6716, 1372, 0, -2, 44844, 2, 0, -81846, 58495; 33284, 0, -2, 134, 2028, 0, -2, -127882, 2, 0, -62326, 150, 268492, 0, -2, -428606, 268541; 0, -2, 249196, 100100, 0, -3252, -26748, 2, 0, -738612, 182, 3724, 0, -157780, 1133312, 2, 0, -2517158, 1462761; 2, 0, -2, -44508, 2003576, 0, -2, 897068, 2, 0, -5332, -4625662, 2, 0, -344084, 230, 9352622, 0, -3769924, -15721720, 8097455; ... in which the right border consists of all the odd numbers in this sequence. RELATED SEQUENCES. The left border, a(n^2), in the above triangle begins: [1, 0, 2, 0, 2, 0, 2, 0, 33284, 0, 2, 0, 883460, 0, 2, ..., A324301(n), ...]. The main diagonal, a(n*(n+1)), in the above triangle begins: [1, -2, -2, 2, 172, -2, -2, 1372, 2, -738612, -5332, ..., A324302(n), ...]. The right border, a(n*(n+2)), in the above triangle begins: [1, 3, 15, 33, 323, 1753, 8991, 58495, 268541, 1462761, ..., A324303(n), ...], and appears to consist of all the odd terms in this sequence. PROG (PARI) {a(n) = my(SUM = sum(m=0, n, x^m*(x^(m+1) + I +x*O(x^n))^m / (1 + I*x^(m+1) +x*O(x^n))^(m+1) ) ); polcoeff(SUM, n)} for(n=0, 120, print1(a(n), ", ")) CROSSREFS Cf. A324301, A324302, A324303. Cf. A323689 (variant), A323695. Sequence in context: A187038 A332260 A056619 * A323695 A303121 A332921 Adjacent sequences: A324297 A324298 A324299 * A324301 A324302 A324303 KEYWORD sign AUTHOR Paul D. Hanna, Feb 21 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 29 13:20 EDT 2023. Contains 363042 sequences. (Running on oeis4.)