login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A324301
a(n) = [x^(n^2)] Sum_{m>=0} x^m * (x^(m+1) + i)^m / (1 + i*x^(m+1))^(m+1), for n >= 0.
4
1, 0, 2, 0, 2, 0, 2, 0, 33284, 0, 2, 0, 883460, 0, 2, 0, 2, 0, 979339580806, 0, 2, 0, 115667460, 0, 2, 0, 2, 0, 799941380, 0, 23305156883711135492, 0, 38029776687864458395142, 0, 4012026683676222852, 0, 2, 0, 44190267844175072072966, 0, 2, 0, 20586734084, 0, 1978148160774064661252, 0, 29798631414807274867656075256452, 0, 59960389124, 0, 1826037115915435009712832114231669892, 0, 113795930884, 0, 2, 0, 2, 0, 272716398084, 0, 3420684050214265377966852
OFFSET
0,3
COMMENTS
a(n) = A324300(n^2) for n >= 0.
LINKS
FORMULA
a(n) = [x^(n^2)] Sum_{n>=0} x^n * (x^(n+1) + i)^n / (1 + i*x^(n+1))^(n+1).
a(n) = [x^(n^2)] Sum_{n>=0} x^n * (x^(n+1) - i)^n / (1 - i*x^(n+1))^(n+1).
a(n) = [x^(n^2)] Sum_{n>=0} (i*x)^n * (1 - i*x^(n+1))^(2*n+1) / (1 + x^(2*n+2))^(n+1).
a(n) = [x^(n^2)] Sum_{n>=0} (-i*x)^n * (1 + i*x^(n+1))^(2*n+1) / (1 + x^(2*n+2))^(n+1).
a(2*n+1) = 0 for n >= 0.
EXAMPLE
The g.f. of A324300 is given by
G(x) = Sum_{n>=0} x^n * (x^(n+1) + i)^n / (1 + i*x^(n+1))^(n+1)
where
G(x) = 1 - 2*x^2 + 3*x^3 + 2*x^4 - 2*x^6 - 14*x^7 + 15*x^8 - 2*x^10 + 22*x^11 + 2*x^12 - 84*x^14 + 33*x^15 + 2*x^16 - 2*x^18 + 38*x^19 + 172*x^20 - 2*x^22 - 508*x^23 + 323*x^24 - 292*x^26 + 54*x^27 + 2*x^28 - 2*x^30 + 1088*x^31 + 444*x^32 - 2580*x^34 + 1753*x^35 + ...
such that
G(x) = 1/(1+i*x) + x*(x^2+i)/(1+i*x^2)^2 + x^2*(x^3+i)^2/(1+i*x^3)^3 + x^3*(x^4+i)^3/(1+i*x^4)^4 + x^4*(x^5+i)^4/(1+i*x^5)^5 + x^5*(x^6+i)^5/(1+i*x^6)^6 + x^6*(x^7+i)^6/(1+i*x^7)^7 + x^7*(x^8+i)^7/(1+i*x^8)^8 + ...
also
G(x) = (1-i*x)/(1+x^2) + i*x*(1-i*x^2)^3/(1+x^4)^2 - x^2*(1-i*x^3)^5/(1+x^6)^3 - i*x^3*(1-i*x^4)^7/(1+x^8)^4 + x^4*(1-i*x^5)^9/(1+x^10)^5 + i*x^5*(1-i*x^6)^11/(1+x^12)^6 + i*x^6*(1-i*x^7)^11/(1+x^14)^7 + ...
Note that the imaginary components in the above sums vanish.
PROG
(PARI) {A324300(n) = my(SUM = sum(m=0, n, x^m*(x^(m+1) + I +x*O(x^n))^m / (1 + I*x^(m+1) +x*O(x^n))^(m+1) ) ); polcoeff(SUM, n)}
{a(n) = A324300(n^2)}
for(n=0, 60, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 21 2019
STATUS
approved