login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A324304
a(n) = [y^(n-1)] Product_{k=0..n-2} (n + k*y + n*y^2) for n > 1 with a(1) = 1.
3
1, 0, 18, 96, 4300, 81360, 3604342, 128389632, 6704335980, 346778956800, 21896347260084, 1459386186255360, 110117675704707190, 8898156449299703040, 786739773441598071750, 74406732202318884372480, 7565016269351818379826372, 818338704493281924572946432, 94154670956813022045927404464, 11458715042302170139584184320000, 1472412964588453156024745207931636
OFFSET
1,3
LINKS
FORMULA
a(n) = A324305(n, n-1) for n >= 1.
a(n) ~ c * n! * (27/4)^n / n^2, where c = 1/(6*Pi*sqrt(3*log(3/2))) = 0.04810181967270783985882272373499905248047631331... - Vaclav Kotesovec, Mar 13 2019, updated Mar 17 2024
EXAMPLE
E.g.f.: A(x) = x + 18*x^3/3! + 96*x^4/4! + 4300*x^5/5! + 81360*x^6/6! + 3604342*x^7/7! + 128389632*x^8/8! + 6704335980*x^9/9! + 346778956800*x^10/10! + 21896347260084*x^11/11! + 1459386186255360*x^12/12! + ...
RELATED TRIANGLE.
Triangle A324305 of coefficients in Product_{k=0..n-2} (n + k*y + n*y^2), n >= 1, begins
1;
2, 0, 2;
9, 3, 18, 3, 9;
64, 48, 200, 96, 200, 48, 64;
625, 750, 2775, 2280, 4300, 2280, 2775, 750, 625;
7776, 12960, 46440, 53640, 100584, 81360, 100584, 53640, 46440, 12960, 7776;
117649, 252105, 909979, 1337700, 2594501, 2753415, 3604342, 2753415, 2594501, 1337700, 909979, 252105, 117649; ...
in which the central terms, A324305(n, n-1) for n >= 1, form this sequence.
MATHEMATICA
Flatten[{1, Table[Coefficient[Expand[Product[(n + k*y + n*y^2), {k, 0, n-2}]], y^(n-1)], {n, 2, 20}]}] (* Vaclav Kotesovec, Mar 13 2019 *)
PROG
(PARI) {A324305(n, k) = polcoeff( prod(j=0, n-2, n + j*y + n*y^2), k, y)}
{a(n) = A324305(n, n-1)}
for(n=1, 25, print1(a(n), ", "))
CROSSREFS
Cf. A324305.
Cf. A201950 (variant).
Sequence in context: A243995 A264202 A338783 * A118864 A118606 A318063
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 28 2019
STATUS
approved