login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A324306 G.f.: Sum_{n>=0} (2^n + 1)^n * x^n / (1 + 2^n*x)^(n+1). 4
1, 2, 14, 464, 62498, 32904512, 68218246274, 561509337384704, 18430991691638470658, 2417187707139291150820352, 1267541805135644381508133312514, 2658386272482288686337601015526764544, 22300569741768576670596245546950890721591298, 748287098859335987804516114266959555239667124355072, 100433559671950042126701317490712783944232737693284609851394 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Paul D. Hanna, Table of n, a(n) for n = 0..75

FORMULA

G.f.: Sum_{n>=0} (2^n + 1)^n * x^n / (1 + 2^n*x)^(n+1).

G.f.: Sum_{n>=0} (2^n - 1)^n * x^n / (1 - 2^n*x)^(n+1).

a(n) = Sum_{k=0..n} binomial(n,k) * (2^n - 2^k)^(n-k).

a(n) = Sum_{k=0..n} (-1)^k * binomial(n,k) * (2^n + 2^k)^(n-k).

a(n) ~ 2^(n^2). - Vaclav Kotesovec, Mar 13 2019

EXAMPLE

G.f.: A(x) = 1 + 2*x + 14*x^2 + 464*x^3 + 62498*x^4 + 32904512*x^5 + 68218246274*x^6 + 561509337384704*x^7 + 18430991691638470658*x^8 + ...

such that

A(x) = 1/(1+x) + (2 + 1)*x/(1 + 2*x)^2 + (2^2 + 1)^2*x^2/(1 + 2^2*x)^3 + (2^3 + 1)^3*x^3/(1 + 2^3*x)^4 + (2^4 + 1)^4*x^4/(1 + 2^4*x)^5 + (2^5 + 1)^5*x^5/(1 + 2^5*x)^6 + (2^6 + 1)^6*x^6/(1 + 2^6*x)^7 + ...

Also,

A(x) = 1/(1-x) + (2 - 1)*x/(1 - 2*x)^2 + (2^2 - 1)^2*x^2/(1 - 2^2*x)^3 + (2^3 - 1)^3*x^3/(1 - 2^3*x)^4 + (2^4 - 1)^4*x^4/(1 - 2^4*x)^5 + (2^5 - 1)^5*x^5/(1 - 2^5*x)^6 + (2^6 - 1)^6*x^6/(1 - 2^6*x)^7 + ...

Explicitly,

A(x) = 1/(1+x) + 3*x/(1 + 2*x)^2 + 5^2*x^2/(1 + 2^2*x)^3 + 9^3*x^3/(1 + 2^3*x)^4 + 17^4*x^4/(1 + 2^4*x)^5 + 33^5*x^5/(1 + 2^5*x)^6 + 65^6*x^6/(1 + 2^6*x)^7 + ...

and

A(x) = 1/(1-x) + x/(1 - 2*x)^2 + 3^2*x^2/(1 - 2^2*x)^3 + 7^3*x^3/(1 - 2^3*x)^4 + 15^4*x^4/(1 - 2^4*x)^5 + 31^5*x^5/(1 - 2^5*x)^6 + 63^6*x^6/(1 - 2^6*x)^7 + ...

MATHEMATICA

Table[1 + Sum[Binomial[n, k]*(2^n - 2^k)^(n - k), {k, 0, n-1}], {n, 0, 15}] (* Vaclav Kotesovec, Mar 13 2019 *)

PROG

(PARI) {a(n) = my(A = sum(m=0, n+1, (2^m + 1)^m*x^m/(1 + 2^m*x +x*O(x^n) )^(m+1) )); polcoeff(A, n)}

for(n=0, 20, print1(a(n), ", "))

(PARI) {a(n) = my(A = sum(m=0, n+1, (2^m - 1)^m*x^m/(1 - 2^m*x +x*O(x^n) )^(m+1) )); polcoeff(A, n)}

for(n=0, 20, print1(a(n), ", "))

(PARI) {a(n) = sum(k=0, n, binomial(n, k) * (2^n - 2^k)^(n-k) )}

for(n=0, 20, print1(a(n), ", "))

(PARI) {a(n) = sum(k=0, n, (-1)^k * binomial(n, k) * (2^n + 2^k)^(n-k) )}

for(n=0, 20, print1(a(n), ", "))

CROSSREFS

Cf. A324308, A324307.

Sequence in context: A337073 A306815 A307123 * A160710 A271145 A277134

Adjacent sequences:  A324303 A324304 A324305 * A324307 A324308 A324309

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Mar 09 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 21 03:47 EST 2022. Contains 350473 sequences. (Running on oeis4.)