login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A355872
G.f. A(x) satisfies: x = Sum_{n=-oo..+oo} (-x)^(n^2) * A(x)^((n-1)^2).
3
2, 14, 434, 17662, 829314, 42293582, 2276970482, 127359871870, 7328894334338, 431089922960910, 25803242957983410, 1566580082112919422, 96239944539571023362, 5971465584401568096846, 373681955307631772312050, 23556948108319423559281918, 1494606013410312933197468930
OFFSET
1,1
COMMENTS
Conjecture: a(n) == 2 (mod 4) for n >= 1.
Conjecture: a(2*n-1) == 2 (mod 8) for n >= 1.
Conjecture: a(2*n) == 6 (mod 8) for n >= 1.
Equals the row sums of triangle A356501.
LINKS
FORMULA
G.f. A(x) = Sum_{n>=1} a(n) * x^(4*n-3) satisfies:
(1) x = Sum_{n=-oo..+oo} (-x)^(n^2) * A(x)^((n+1)^2).
(2) x = A(x) * Product_{n>=1} (1 - x^(2*n)*A(x)^(2*n)) * (1 - x^(2*n-1)*A(x)^(2*n+1)) * (1 - x^(2*n-1)*A(x)^(2*n-3)), by the Jacobi triple product identity.
(3) -1 = Product_{n>=1} (1 - x^(2*n)*A(x)^(2*n)) * (1 - x^(2*n+1)*A(x)^(2*n-1)) * (1 - x^(2*n-3)*A(x)^(2*n-1)), by the Jacobi triple product identity.
a(n) ~ c * d^n / n^(3/2), where d = 69.7705416198088434764685861402300375255728007801297265... and c = 0.0044667602848752470638241640199049506066862963974858... - Vaclav Kotesovec, Mar 19 2023
EXAMPLE
G.f. A(x) = 2*x + 14*x^5 + 434*x^9 + 17662*x^13 + 829314*x^17 + 42293582*x^21 + 2276970482*x^25 + 127359871870*x^29 + 7328894334338*x^33 + 431089922960910*x^37 + ...
such that A = A(x) satisfies
x = ... + x^16*A^25 - x^9*A^16 + x^4*A^9 - x*A^4 + A - x + x^4*A - x^9*A^4 + x^16*A^9 - x^25*A^16 +- ... + (-x)^(n^2) * A(x,y)^((n-1)^2) + ...
MATHEMATICA
(* Calculation of constant d: *) 1/r^4 /. FindRoot[{r*s^4*QPochhammer[1/(r*s^3), r^2*s^2] * QPochhammer[s/r, r^2*s^2]*QPochhammer[r^2*s^2, r^2*s^2] == (r - s)*(-1 + r*s^3), 1/s^3*(3*s + r*(-4 + r*s^3) + 2*r^2*(r - s)*s^2*(-1 + r*s^3)* Derivative[0, 1][QPochhammer][1/(r*s^3), r^2*s^2] / QPochhammer[1/(r*s^3), r^2*s^2] + 2*r^3*s^6*QPochhammer[1/(r*s^3), r^2*s^2] * QPochhammer[r^2*s^2, r^2*s^2] * Derivative[0, 1][QPochhammer][s/r, r^2*s^2] + (r - s)*(-1 + r*s^3)* (-(2*QPolyGamma[0, 1, r^2*s^2] - 3*QPolyGamma[0, Log[1/(r*s^3)]/Log[r^2*s^2], r^2*s^2] + QPolyGamma[0, Log[s/r]/Log[r^2*s^2], r^2*s^2]) / Log[r^2*s^2] + 2*r^2*s^2 * Derivative[0, 1][QPochhammer][r^2*s^2, r^2*s^2] / QPochhammer[r^2*s^2, r^2*s^2])) == 0}, {r, 1/60}, {s, 2}, WorkingPrecision -> 70] (* Vaclav Kotesovec, Jan 18 2024 *)
PROG
(PARI) {a(n) = my(A=[0, 2]); for(i=1, n, A=concat(A, [0, 0, 0, 0]);
A[#A] = -polcoeff( sum(m=-#A, #A, (-x)^(m^2) * Ser(A)^((m-1)^2) ), #A-1)); A[4*n-2]}
for(n=1, 20, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Aug 09 2022
STATUS
approved