login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A355871
G.f. A(x) satisfies: 2 = Sum_{n=-oo..+oo} x^(n*(n+1)/2) * A(x)^n.
3
1, 2, 2, 12, 22, 144, 318, 2102, 5120, 34274, 88352, 597002, 1599676, 10879502, 29983958, 204851678, 576914820, 3953960052, 11329537402, 77815428652, 226170428918, 1555598157856, 4576144621100, 31500863667990, 93634976287220, 644808182456240, 1934219875423410
OFFSET
0,2
LINKS
FORMULA
G.f. A(x,y) = Sum_{n>=0} a(n)*x^n satisfies:
(1) 2 = Sum_{n=-oo..+oo} x^(n*(n+1)/2) * A(x)^n.
(2) 2 = Product_{n>=1} (1 + x^n*A(x)) * (1 + x^(n-1)/A(x)) * (1 - x^n), by the Jacobi triple product identity.
(3) a(n) = Sum_{k=0..3*n} A355870(n,k)*2^k for n >= 0.
EXAMPLE
G.f.: A(x) = 1 + 2*x + 2*x^2 + 12*x^3 + 22*x^4 + 144*x^5 + 318*x^6 + 2102*x^7 + 5120*x^8 + 34274*x^9 + 88352*x^10 + 597002*x^11 + 1599676*x^12 + ...
where
2 = ... + x^6/A(x)^4 + x^3/A(x)^3 + x/A(x)^2 + 1/A(x) + 1 + x*A(x) + x^3*A(x)^2 + x^6*A(x)^3 + x^10*A(x)^4 + ... + x^(n*(n+1)/2) * A(x)^n + ...
Also,
2 = (1 + x*A(x))*(1 + 1/A(x))*(1-x) * (1 + x^2*A(x))*(1 + x/A(x))*(1-x^2) * (1 + x^3*A(x))*(1 + x^2/A(x))*(1-x^3) * (1 + x^4*A(x))*(1 + x^3/A(x))*(1-x^4) * ...
Specific values.
A(1/5) = 1.8349253975...
PROG
(PARI) {a(n) = my(A=[1], M); for(i=1, n, A=concat(A, 0); M = ceil(sqrt(2*(#A)+9));
A[#A] = polcoeff( -2 + sum(m=-M, M, x^(m*(m+1)/2) * Ser(A)^m ), #A-1)); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Cf. A355870.
Sequence in context: A092900 A303537 A369086 * A164961 A362192 A122007
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 19 2022
STATUS
approved