login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A164961
Triangle read by rows: T[n,m] = quadruple factorials A001813(n) * binomials A007318(n,m)
1
1, 2, 2, 12, 24, 12, 120, 360, 360, 120, 1680, 6720, 10080, 6720, 1680, 30240, 151200, 302400, 302400, 151200, 30240, 665280, 3991680, 9979200, 13305600, 9979200, 3991680, 665280, 17297280, 121080960, 363242880, 605404800, 605404800
OFFSET
0,2
COMMENTS
Row sums give A052714 [From Tilman Neumann, Sep 07 2009]
Triangle T(n,k), read by rows, given by (2, 4, 6, 8, 10, 12, 14, ...) DELTA ((2, 4, 6, 8, 10, 12, 14, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Jan 07 2012
FORMULA
T(n,k) = A085881(n,k)*2^n. - Philippe Deléham, Jan 07 2012
Recurrence equation: T(n+1,k) = (4*n+2)*(T(n,k) + T(n,k-1)). - Peter Bala, Jul 15 2012
E.g.f.: 1/sqrt(1-4*x-4*xy). - Peter Bala, Jul 15 2012
EXAMPLE
Triangle begins :
1
2, 2
12, 24, 12
120, 360, 360, 120
1680, 6720, 10080, 6720, 1680
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Tilman Neumann, Sep 02 2009
STATUS
approved