login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A324305
Triangle, read by rows, where the g.f. of row n equals Product_{k=0..n-2} (n + k*y + n*y^2) for n > 1 with a single '1' in row 1.
4
1, 2, 0, 2, 9, 3, 18, 3, 9, 64, 48, 200, 96, 200, 48, 64, 625, 750, 2775, 2280, 4300, 2280, 2775, 750, 625, 7776, 12960, 46440, 53640, 100584, 81360, 100584, 53640, 46440, 12960, 7776, 117649, 252105, 909979, 1337700, 2594501, 2753415, 3604342, 2753415, 2594501, 1337700, 909979, 252105, 117649, 2097152, 5505024, 20414464, 36040704, 73543680, 94730496, 133244544, 128389632, 133244544, 94730496, 73543680, 36040704, 20414464, 5505024, 2097152
OFFSET
1,2
FORMULA
GENERATING FUNCTIONS.
E.g.f.: A(x,y) = x/(1 - y*A(x,y))^(1/y + y).
E.g.f.: A(x,y) = Series_Reversion( x*(1 - x*y)^(1/y + y) ), wrt x.
E.g.f.: A(x,y) = Sum_{n>=1} x^n/n! * Product_{k=0..n-2} (n + k*y + n*y^2)
E.g.f.: A(x,y) = Series_Reversion( x/G(x,y) ) such that A(x/G(x,y),y) = x, where G(x,y) = Sum_{n>=0} x^n/n! * Product_{k=0..n-1} (1 + k*y + y^2) is the e.g.f. of A201949.
PARTICULAR ARGUMENTS.
E.g.f. at y = 0: A(x,y=0) = -LambertW(-x) = x*exp(-LambertW(-x)).
E.g.f. at y = 1: A(x,y=1) = x*G(x)^2, where G = 1 + x*G(x)^3 is the g.f. of A001764.
FORMULAS INVOLVING TERMS.
Row sums: Sum_{k=0..2*n-2} T(n,k) = (3*n-2)!/(2*n-1)! for n >= 1.
T(n,0) = T(n,2*n-2) = n^(n-1) for n >= 1.
T(n,n-1) = A324304(n) for n >= 1.
EXAMPLE
E.g.f.: A(x,y) = Sum_{n>=1} x^n/n! * Product_{k=0..n-2} (n + k*y + n*y^2) and satisfies A(x,y) = x/(1 - y*A(x,y))^(1/y + y).
Explicitly,
A(x,y) = x + (2*y^2 + 2)*x^2/2! + (9*y^4 + 3*y^3 + 18*y^2 + 3*y + 9)*x^3/3! + (64*y^6 + 48*y^5 + 200*y^4 + 96*y^3 + 200*y^2 + 48*y + 64)*x^4/4! + (625*y^8 + 750*y^7 + 2775*y^6 + 2280*y^5 + 4300*y^4 + 2280*y^3 + 2775*y^2 + 750*y + 625)*x^5/5! + (7776*y^10 + 12960*y^9 + 46440*y^8 + 53640*y^7 + 100584*y^6 + 81360*y^5 + 100584*y^4 + 53640*y^3 + 46440*y^2 + 12960*y + 7776)*x^6/6! + (117649*y^12 + 252105*y^11 + 909979*y^10 + 1337700*y^9 + 2594501*y^8 + 2753415*y^7 + 3604342*y^6 + 2753415*y^5 + 2594501*y^4 + 1337700*y^3 + 909979*y^2 + 252105*y + 117649)*x^7/7! + ...
Setting y = 1 yields an o.g.f. of A006013:
A(x,y=1) = x + 2*x^2 + 7*x^3 + 30*x^4 + 143*x^5 + 728*x^6 + 3876*x^7 + 21318*x^8 + 120175*x^9 + ... + binomial(3*n-2,n-1)/n * x^n + ...
TRIANGLE.
This triangle of coefficients in Product_{k=0..n-2} (n + k*y + n*y^2), n >= 1, begins
1;
2, 0, 2;
9, 3, 18, 3, 9;
64, 48, 200, 96, 200, 48, 64;
625, 750, 2775, 2280, 4300, 2280, 2775, 750, 625;
7776, 12960, 46440, 53640, 100584, 81360, 100584, 53640, 46440, 12960, 7776;
117649, 252105, 909979, 1337700, 2594501, 2753415, 3604342, 2753415, 2594501, 1337700, 909979, 252105, 117649;
2097152, 5505024, 20414464, 36040704, 73543680, 94730496, 133244544, 128389632, 133244544, 94730496, 73543680, 36040704, 20414464, 5505024, 2097152; ...
RELATED SERIES.
The e.g.f. may be defined by A(x,y) = Series_Reversion( x/G(x,y) )
where G(x,y) is the e.g.f. of A201949 and equals
G(x,y) = Sum_{n>=0} x^n/n! * Product_{k=0..n-1} (1 + k*y + y^2)
so that
G(x,y) = 1 + (1 + y^2)*x + (1 + y + 2*y^2 + y^3 + y^4)*x^2/2! + (1 + 3*y + 5*y^2 + 6*y^3 + 5*y^4 + 3*y^5 + y^6)*x^3/3! + (1 + 6*y + 15*y^2 + 24*y^3 + 28*y^4 + 24*y^5 + 15*y^6 + 6*y^7 + y^8)*x^4/4! + (1 + 10*y + 40*y^2 + 90*y^3 + 139*y^4 + 160*y^5 + 139*y^6 + 90*y^7 + 40*y^8 + 10*y^9 + y^10)*x^5/5! + ...
and G(x,y) = x / Series_Reversion( A(x,y) ).
RELATED TRIANGLE.
Triangle A201949 of coefficients in G(x,y) such that A(x/G(x,y),y) = x begins
1;
1, 0, 1;
1, 1, 2, 1, 1;
1, 3, 5, 6, 5, 3, 1;
1, 6, 15, 24, 28, 24, 15, 6, 1;
1, 10, 40, 90, 139, 160, 139, 90, 40, 10, 1;
1, 15, 91, 300, 629, 945, 1078, 945, 629, 300, 91, 15, 1; ...
where the g.f. of row n is Product_{k=0..n-1} (1 + k*y + y^2) for n >= 0.
PROG
(PARI) {T(n, k)=polcoeff(prod(j=0, n-2, n + j*y + n*y^2), k, y)}
{for(n=1, 10, for(k=0, 2*n-2, print1(T(n, k), ", ")); print(""))}
(PARI) /* A(x, y) = Series_Reversion(x/G(x, y)) where G(x, y) = e.g.f. A201949 */
{T(n, k) = my(G=1, A=x);
G = sum(m=0, n, x^m/m! * prod(j=0, m-1, 1 + j*y + y^2) +x*O(x^n));
A = serreverse(x/G);
n!*polcoeff(polcoeff(A, n, x), k, y)}
{for(n=1, 10, for(k=0, 2*n-2, print1(T(n, k), ", ")); print(""))}
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Paul D. Hanna, Feb 28 2019
STATUS
approved