login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A324958
Triangle of coefficients T(n,k) of y^n in Product_{k=0..n-2} (n + (2*n + k)*y + n*y^2), as read by rows of terms k = 0..2*n-2, for n >= 1.
3
1, 2, 4, 2, 9, 39, 60, 39, 9, 64, 432, 1160, 1584, 1160, 432, 64, 625, 5750, 22275, 47380, 60460, 47380, 22275, 5750, 625, 7776, 90720, 461160, 1343160, 2479464, 3029040, 2479464, 1343160, 461160, 90720, 7776, 117649, 1663893, 10489969, 38937360, 94679711, 158760987, 188149822, 158760987, 94679711, 38937360, 10489969, 1663893, 117649, 2097152, 34865152, 262635520, 1187049472, 3593318400, 7701010688, 12043471488, 13957194496, 12043471488, 7701010688, 3593318400, 1187049472, 262635520, 34865152, 2097152
OFFSET
1,2
FORMULA
E.g.f. A(x) = Sum_{n>=1} x^n/n! * Sum_{k=0..2*n-2} T(n,k)*y^k satisfies
(1) A(x,y) = Sum_{n>=1} x^n/n! * Product_{k=0..n-2} (n + (2*n + k)*y + n*y^2).
(2) A(x,y) = Series_Reversion( x*(1 - x*y)^((1+y)^2/y) ), wrt x.
(3) A(x,y) = x/(1 - y*A(x))^((1+y)^2/y).
(4) A(x,y) = x*Sum_{n>=0} A(x,y)^n/n! * Product_{k=0..n-1} (1 + (k+2)*y + y^2).
PARTICULAR ARGUMENTS.
E.g.f. at y = 0: A(x,y=0) = -LambertW(-x) = x*exp(-LambertW(-x)).
E.g.f. at y = 1: A(x,y=1) = x*G(x)^4, where G(x) = 1 + x*G(x)^5 is the g.f. of A002294.
FORMULAS INVOLVING TERMS.
Row sums: Sum_{k=0..2*n-2} T(n,k) = (5*n-2)!/(4*n-1)! for n >= 1.
T(n,0) = T(n,2*n-2) = n^(n-1) for n >= 1.
T(n,n-1) = A324959(n) for n >= 1.
EXAMPLE
E.g.f.: A(x,y) = Sum_{n>=0} x^n/n! * Sum_{k=0..2*n-2} T(n,k)*y^k starts
A(x,y) = x + (2*y^2 + 4*y + 2)*x^2/2! + (9*y^4 + 39*y^3 + 60*y^2 + 39*y + 9)*x^3/3! + (64*y^6 + 432*y^5 + 1160*y^4 + 1584*y^3 + 1160*y^2 + 432*y + 64)*x^4/4! + (625*y^8 + 5750*y^7 + 22275*y^6 + 47380*y^5 + 60460*y^4 + 47380*y^3 + 22275*y^2 + 5750*y + 625)*x^5/5! + (7776*y^10 + 90720*y^9 + 461160*y^8 + 1343160*y^7 + 2479464*y^6 + 3029040*y^5 + 2479464*y^4 + 1343160*y^3 + 461160*y^2 + 90720*y + 7776)*x^6/6! + (117649*y^12 + 1663893*y^11 + 10489969*y^10 + 38937360*y^9 + 94679711*y^8 + 158760987*y^7 + 188149822*y^6 + 158760987*y^5 + 94679711*y^4 + 38937360*y^3 + 10489969*y^2 + 1663893*y + 117649)*x^7/7! + (2097152*y^14 + 34865152*y^13 + 262635520*y^12 + 1187049472*y^11 + 3593318400*y^10 + 7701010688*y^9 + 12043471488*y^8 + 13957194496*y^7 + 12043471488*y^6 + 7701010688*y^5 + 3593318400*y^4 + 1187049472*y^3 + 262635520*y^2 + 34865152*y + 2097152)*x^8/8! + ...
This triangle of coefficients T(n,k) of x^n*y^k/n! in e.g.f. A(x,y) begins:
1;
2, 4, 2;
9, 39, 60, 39, 9;
64, 432, 1160, 1584, 1160, 432, 64;
625, 5750, 22275, 47380, 60460, 47380, 22275, 5750, 625;
7776, 90720, 461160, 1343160, 2479464, 3029040, 2479464, 1343160, 461160, 90720, 7776;
117649, 1663893, 10489969, 38937360, 94679711, 158760987, 188149822, 158760987, 94679711, 38937360, 10489969, 1663893, 117649;
2097152, 34865152, 262635520, 1187049472, 3593318400, 7701010688, 12043471488, 13957194496, 12043471488, 7701010688, 3593318400, 1187049472, 262635520, 34865152, 2097152; ...
PROG
(PARI) {T(n, k) = polcoeff(prod(m=0, n-2, n + (2*n+m)*y + n*y^2 +y*O(y^k)), k, y)}
for(n=1, 10, for(k=0, 2*n-2, print1(T(n, k), ", ")); print(""))
(PARI) {T(n, k) = my(A = serreverse( x*(1 - x*y +x*O(x^n) )^((1+y)^2/y)));
n!*polcoeff(polcoeff(A, n, x), k, y)}
for(n=1, 10, for(k=0, 2*n-2, print1(T(n, k), ", ")); print(""))
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Paul D. Hanna, Mar 20 2019
STATUS
approved