login
A324302
a(n) = [x^(n*(n+1))] Sum_{m>=0} x^m * (x^(m+1) + i)^m / (1 + i*x^(m+1))^(m+1), for n >= 0.
4
1, -2, -2, 2, 172, -2, -2, 1372, 2, -738612, -5332, 7415020, 2, -14644, -2, 2, 125777125816, -2, -2327347908, 64012, 2, -2, -197253108369622, 41693053276, 2, -773467493194481960, -1491557715038479572, 2, 292684, -131602671362443892, -217207820204595664086, 436924, 2067093196924, -2, -628852, 11304833757393576452, 169488479720784288129181484, -2828375951845443473305672, -2, 21576359785372, 1194652, -2
OFFSET
0,2
COMMENTS
a(n) = A324300(n*(n+1)) for n >= 0.
LINKS
FORMULA
a(n) = [x^(n*(n+1))] Sum_{n>=0} x^n * (x^(n+1) + i)^n / (1 + i*x^(n+1))^(n+1).
a(n) = [x^(n*(n+1))] Sum_{n>=0} x^n * (x^(n+1) - i)^n / (1 - i*x^(n+1))^(n+1).
a(n) = [x^(n*(n+1))] Sum_{n>=0} (i*x)^n * (1 - i*x^(n+1))^(2*n+1) / (1 + x^(2*n+2))^(n+1).
a(n) = [x^(n*(n+1))] Sum_{n>=0} (-i*x)^n * (1 + i*x^(n+1))^(2*n+1) / (1 + x^(2*n+2))^(n+1).
EXAMPLE
The g.f. of A324300 is given by
G(x) = Sum_{n>=0} x^n * (x^(n+1) + i)^n / (1 + i*x^(n+1))^(n+1)
where
G(x) = 1 - 2*x^2 + 3*x^3 + 2*x^4 - 2*x^6 - 14*x^7 + 15*x^8 - 2*x^10 + 22*x^11 + 2*x^12 - 84*x^14 + 33*x^15 + 2*x^16 - 2*x^18 + 38*x^19 + 172*x^20 - 2*x^22 - 508*x^23 + 323*x^24 - 292*x^26 + 54*x^27 + 2*x^28 - 2*x^30 + 1088*x^31 + 444*x^32 - 2580*x^34 + 1753*x^35 + ...
such that
G(x) = 1/(1+i*x) + x*(x^2+i)/(1+i*x^2)^2 + x^2*(x^3+i)^2/(1+i*x^3)^3 + x^3*(x^4+i)^3/(1+i*x^4)^4 + x^4*(x^5+i)^4/(1+i*x^5)^5 + x^5*(x^6+i)^5/(1+i*x^6)^6 + x^6*(x^7+i)^6/(1+i*x^7)^7 + x^7*(x^8+i)^7/(1+i*x^8)^8 + ...
also
G(x) = (1-i*x)/(1+x^2) + i*x*(1-i*x^2)^3/(1+x^4)^2 - x^2*(1-i*x^3)^5/(1+x^6)^3 - i*x^3*(1-i*x^4)^7/(1+x^8)^4 + x^4*(1-i*x^5)^9/(1+x^10)^5 + i*x^5*(1-i*x^6)^11/(1+x^12)^6 + i*x^6*(1-i*x^7)^11/(1+x^14)^7 + ...
Note that the imaginary components in the above sums vanish.
PROG
(PARI) {A324300(n) = my(SUM = sum(m=0, n, x^m*(x^(m+1) + I +x*O(x^n))^m / (1 + I*x^(m+1) +x*O(x^n))^(m+1) ) ); polcoeff(SUM, n)}
{a(n) = A324300(n*(n+1))}
for(n=0, 60, print1(a(n), ", "))
CROSSREFS
KEYWORD
sign
AUTHOR
Paul D. Hanna, Feb 21 2019
STATUS
approved