Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #21 Mar 17 2024 06:08:36
%S 1,0,18,96,4300,81360,3604342,128389632,6704335980,346778956800,
%T 21896347260084,1459386186255360,110117675704707190,
%U 8898156449299703040,786739773441598071750,74406732202318884372480,7565016269351818379826372,818338704493281924572946432,94154670956813022045927404464,11458715042302170139584184320000,1472412964588453156024745207931636
%N a(n) = [y^(n-1)] Product_{k=0..n-2} (n + k*y + n*y^2) for n > 1 with a(1) = 1.
%H Paul D. Hanna, <a href="/A324304/b324304.txt">Table of n, a(n) for n = 1..100</a>
%F a(n) = A324305(n, n-1) for n >= 1.
%F a(n) ~ c * n! * (27/4)^n / n^2, where c = 1/(6*Pi*sqrt(3*log(3/2))) = 0.04810181967270783985882272373499905248047631331... - _Vaclav Kotesovec_, Mar 13 2019, updated Mar 17 2024
%e E.g.f.: A(x) = x + 18*x^3/3! + 96*x^4/4! + 4300*x^5/5! + 81360*x^6/6! + 3604342*x^7/7! + 128389632*x^8/8! + 6704335980*x^9/9! + 346778956800*x^10/10! + 21896347260084*x^11/11! + 1459386186255360*x^12/12! + ...
%e RELATED TRIANGLE.
%e Triangle A324305 of coefficients in Product_{k=0..n-2} (n + k*y + n*y^2), n >= 1, begins
%e 1;
%e 2, 0, 2;
%e 9, 3, 18, 3, 9;
%e 64, 48, 200, 96, 200, 48, 64;
%e 625, 750, 2775, 2280, 4300, 2280, 2775, 750, 625;
%e 7776, 12960, 46440, 53640, 100584, 81360, 100584, 53640, 46440, 12960, 7776;
%e 117649, 252105, 909979, 1337700, 2594501, 2753415, 3604342, 2753415, 2594501, 1337700, 909979, 252105, 117649; ...
%e in which the central terms, A324305(n, n-1) for n >= 1, form this sequence.
%t Flatten[{1, Table[Coefficient[Expand[Product[(n + k*y + n*y^2), {k, 0, n-2}]], y^(n-1)], {n, 2, 20}]}] (* _Vaclav Kotesovec_, Mar 13 2019 *)
%o (PARI) {A324305(n, k) = polcoeff( prod(j=0, n-2, n + j*y + n*y^2), k, y)}
%o {a(n) = A324305(n, n-1)}
%o for(n=1, 25, print1(a(n), ", "))
%Y Cf. A324305.
%Y Cf. A201950 (variant).
%K nonn
%O 1,3
%A _Paul D. Hanna_, Feb 28 2019