|
|
A123290
|
|
Number of distinct binomial(n,2)-tuples of zeros and ones that are obtained as the collection of all 2 X 2 minor determinants of a 2 X n matrix over GF(2).
|
|
1
|
|
|
2, 8, 36, 156, 652, 2668, 10796, 43436, 174252, 698028, 2794156, 11180716, 44731052, 178940588, 715795116, 2863245996, 11453115052, 45812722348, 183251413676, 733006703276, 2932028910252, 11728119835308, 46912487729836
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
2,1
|
|
COMMENTS
|
Or, the number of commutators in a central extension of order 2^binomial(n+1,2) covering the elementary Abelian 2-group of order 2^n. Probably also equal to the number of symmetric (n-1) X (n-1) matrices with entries in GF(2) of rank less than or equal to 2 and the number of skew-symmetric n X n matrices in GF(2) of rank less than or equal to 2.
|
|
REFERENCES
|
Luise-Charlotte Kappe and Robert F. Morse, On Commutators in groups. Groups St. Andrews 2005. Vol. 2, 531-558, London Math. Soc. Lecture Note Ser., 340, Cambridge Univ. Press, Cambridge, 2007.
|
|
LINKS
|
|
|
FORMULA
|
a(n) = (2^(2n-1) - 2^n - 2^(n-1) + 4)/3 = 1 + (2^n - 1)*(2^(n-1) - 1)/3
a(2)=2, a(3)=8, a(4)=36, a(n)=7*a(n-1)-14*a(n-2)+8*a(n-3). - Harvey P. Dale, Oct 03 2011
G.f.: 2*x^2*(1 - 3*x + 4*x^2) / ((1 - x)*(1 - 2*x)*(1 - 4*x)). - Colin Barker, Jan 26 2018
|
|
EXAMPLE
|
a(4) = 36. Let G be a central extension of order 2^C(5,2) covering (Z/2Z)^4; the commutator subgroup of G has order 2^C(4,2) = 64, so it is not the case that every element of the commutator subgroup of G is actually a commutator.
|
|
MATHEMATICA
|
Table[1+(2^n-1) (2^(n-1)-1)/3, {n, 2, 30}] (* or *) LinearRecurrence[ {7, -14, 8}, {2, 8, 36}, 30] (* Harvey P. Dale, Oct 03 2011 *)
|
|
PROG
|
(Magma) minors := function(n) F := GF(2); V := VectorSpace(F, 2*n); S := { } ; for v in V do M := Matrix(F, 2, n, ElementToSequence(v)); seq := Minors(M, 2); S := Include(S, seq); end for; return #S; end function;
(Magma) [(2^(2*n-1) - 2^n - 2^(n-1) + 4)/3: n in [2..30]]; // Vincenzo Librandi, Oct 04 2011
(PARI) Vec(2*x^2*(1 - 3*x + 4*x^2) / ((1 - x)*(1 - 2*x)*(1 - 4*x)) + O(x^30)) \\ Colin Barker, Jan 26 2018
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
David Savitt (savitt(AT)math.arizona.edu), Oct 10 2006, Oct 12 2006
|
|
STATUS
|
approved
|
|
|
|