login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A307400 G.f. A(x) satisfies: A(x) = 1 + Sum_{k>=1} k*x^k*A(x)^k/(1 + x^k). 2
1, 1, 2, 9, 28, 109, 440, 1790, 7537, 32300, 140438, 618608, 2753510, 12366672, 55973926, 255059808, 1169143476, 5387268256, 24940059514, 115943355422, 541047868905, 2533458659581, 11900017205866, 56055896316345, 264748474342341, 1253414056154014, 5947373587731308 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Table of n, a(n) for n=0..26.

FORMULA

G.f. A(x) satisfies: A(x) = 1 + Sum_{k>=1} x^k * Sum_{d|k} (-1)^(k/d+1)*d*A(x)^d.

EXAMPLE

G.f.: A(x) = 1 + x + 2*x^2 + 9*x^3 + 28*x^4 + 109*x^5 + 440*x^6 + 1790*x^7 + 7537*x^8 + 32300*x^9 + 140438*x^10 + ...

MATHEMATICA

terms = 27; A[_] = 0; Do[A[x_] = 1 + Sum[k x^k A[x]^k/(1 + x^k), {k, 1, j}] + O[x]^j, {j, 1, terms}]; CoefficientList[A[x], x]

terms = 27; A[_] = 0; Do[A[x_] = 1 + Sum[x^k Sum[(-1)^(k/d + 1) d A[x]^d, {d, Divisors[k]}], {k, 1, j}] + O[x]^j, {j, 1, terms}]; CoefficientList[A[x], x]

CROSSREFS

Cf. A000593, A192207, A192401, A307396, A307398.

Sequence in context: A002532 A098518 A128239 * A323682 A086511 A291632

Adjacent sequences: A307397 A307398 A307399 * A307401 A307402 A307403

KEYWORD

nonn

AUTHOR

Ilya Gutkovskiy, Apr 07 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 3 07:52 EST 2022. Contains 358512 sequences. (Running on oeis4.)