login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A307402
G.f. A(x) satisfies: A(x) = Sum_{j>=0} j!*x^j*A(x)^j / Product_{k=1..j} (1 - k*x*A(x)).
3
1, 1, 4, 23, 164, 1362, 12792, 133891, 1550148, 19772030, 277054232, 4252637446, 71248226536, 1297226168708, 25542157054944, 541131735552507, 12275049552454916, 296787898215881990, 7617196890240489912, 206772478080888288082, 5917589117194665548600, 178040033221054576103036
OFFSET
0,3
LINKS
FORMULA
G.f. A(x) satisfies: A(x) = Sum_{k>=0} A000670(k)*x^k*A(x)^k.
G.f.: A(x) = (1/x)*Series_Reversion(x/Sum_{k>=0} A000670(k)*x^k).
a(n) ~ n! / (log(2))^(n+1). - Vaclav Kotesovec, Apr 07 2019
EXAMPLE
G.f.: A(x) = 1 + x + 4*x^2 + 23*x^3 + 164*x^4 + 1362*x^5 + 12792*x^6 + 133891*x^7 + 1550148*x^8 + 19772030*x^9 + 277054232*x^10 + ...
MATHEMATICA
terms = 22; A[_] = 1; Do[A[x_] = Sum[j! x^j A[x]^j/Product[(1 - k x A[x]), {k, 1, j}], {j, 0, i}] + O[x]^i, {i, 1, terms}]; CoefficientList[A[x], x]
terms = 22; A[_] = 1; Do[A[x_] = Sum[(1/2) HurwitzLerchPhi[1/2, -k, 0] x^k A[x]^k, {k, 0, j}] + O[x]^j, {j, 1, terms}]; CoefficientList[A[x], x]
terms = 22; CoefficientList[1/x InverseSeries[Series[x/Sum[(1/2) HurwitzLerchPhi[1/2, -k, 0] x^k, {k, 0, terms}], {x, 0, terms}], x], x]
CROSSREFS
Sequence in context: A245110 A342988 A304074 * A354497 A111547 A171992
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Apr 07 2019
STATUS
approved