login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A114633
a(n) = (n+1)*(n+2)/2 * Sum_{k=0..floor(n/2)} n!/(n-2*k)!.
1
1, 3, 18, 70, 555, 2961, 31108, 213228, 2799765, 23455135, 369569046, 3659001138, 67261566463, 768390239085, 16142775951240, 209002145031256, 4939689441079593, 71478733600689723, 1877081987610245530, 30021068112289683870, 867211878275933435091, 15190660464818580038473
OFFSET
0,2
COMMENTS
Formula was found by Paul D. Hanna.
Related to logarithmic numbers A002104.
LINKS
FORMULA
a(n) = A087208(n)*(n+1)*(n+2)/2. - Paul D. Hanna
E.g.f.: exp(x)/(1-x^2)*(x^2/2) (with offset 2). - Zerinvary Lajos, Apr 03 2009
MAPLE
a:= n-> (n+1)*(n+2)/2*sum(n!/(n-2*k)!, k=0..floor(n/2)): seq(a(n), n=0..20);
MATHEMATICA
Rest[Rest[With[{nn=25}, CoefficientList[Series[Exp[x]/(1 - x^2)(x^2/2), {x, 0, nn}], x] Range[0, nn]!]]] (* Vincenzo Librandi, Sep 03 2017 *)
CROSSREFS
Sequence in context: A374487 A098522 A174764 * A135070 A073961 A305623
KEYWORD
nonn
AUTHOR
Creighton Dement, Feb 17 2006
EXTENSIONS
More terms from Vincenzo Librandi, Sep 03 2017
STATUS
approved