login
A073961
Let R be the polynomial ring GF(2)[x]. Then a(n) = number of distinct products f*g with f,g in R and 1 <= deg(f),deg(g) <= n.
1
3, 18, 72, 262, 975, 3562, 13456, 50765, 194122, 745526, 2882670, 11173191, 43485970, 169656399, 663259282, 2598327983, 10190686903, 40038932993, 157431481559, 619871680780, 2442107519364, 9632769554849, 38008189079970, 150127212826428, 593141913076502
OFFSET
1,1
COMMENTS
W. Edwin Clark computed the initial terms.
FORMULA
a(n) = A086908(n) - 1 - Sum_{i=0, n} A001037(i). - Andrew Howroyd, Jul 10 2018
EXAMPLE
From Andrew Howroyd, Jul 10 2018: (Start)
Case n=1: The following 3 polynomials can be represented:
x^2 = x*x,
x^2 + 1 = (x + 1)*(x+1),
x^2 + x = x*(x + 1).
(End)
CROSSREFS
KEYWORD
nonn
AUTHOR
Yuval Dekel (dekelyuval(AT)hotmail.com), Sep 13 2003
EXTENSIONS
a(9)-a(25) from Andrew Howroyd, Jul 10 2018
STATUS
approved