login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A305623
Number of chiral pairs of rows of n colors with exactly 3 different colors.
2
0, 0, 3, 18, 72, 267, 885, 2880, 9000, 27915, 85233, 259308, 783972, 2366007, 7122405, 21422160, 64364400, 193307955, 580316313, 1741791348, 5226945372, 15684152847, 47058746925, 141189342840, 423593188200, 1270831465995, 3812595048993, 11437991207388, 34314376250772, 102943948309287, 308833455491445, 926503630549920, 2779517334002400, 8338565015656035, 25015720816575273, 75047214375967428
OFFSET
1,3
COMMENTS
If the row is achiral, i.e., the same as its reverse, we ignore it. If different from its reverse, we count it and its reverse as a chiral pair.
FORMULA
a(n) = (k!/2) * (S2(n,k) - S2(ceiling(n/2),k)), with k=3 colors used and where S2(n,k) is the Stirling subset number A008277.
a(n) = (A001117(n) - A056454(n)) / 2.
a(n) = A001117(n) - A056310(n) = A056310(n) - A056454(n).
G.f.: -(k!/2) * (x^(2k-1) + x^(2k)) / Product_{j=1..k} (1 - j*x^2) + (k!/2) * x^k / Product_{j=1..k} (1 - j*x) with k=3 colors used.
G.f.: 3*x^3*(5*x^2-x-1)/(-36*x^6+30*x^5+24*x^4-25*x^3-x^2+5*x-1). - Simon Plouffe, Jun 20 2018
EXAMPLE
For a(3) = 3, the chiral pairs are ABC-CBA, ACB-BCA, and BAC-CAB.
MATHEMATICA
k=3; Table[(k!/2) (StirlingS2[n, k] - StirlingS2[Ceiling[n/2], k]), {n, 1, 40}]
PROG
(PARI) a(n) = 3*(stirling(n, 3, 2)-stirling(ceil(n/2), 3, 2)); \\ Altug Alkan, Sep 26 2018
CROSSREFS
Third column of A305622.
A056454(n) is number of achiral rows of n colors with exactly 3 different colors.
Sequence in context: A114633 A135070 A073961 * A280804 A152897 A059393
KEYWORD
nonn,easy
AUTHOR
Robert A. Russell, Jun 06 2018
STATUS
approved