login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A305624
Number of chiral pairs of rows of n colors with exactly 4 different colors.
2
0, 0, 0, 12, 120, 780, 4188, 20400, 93120, 409140, 1748220, 7337232, 30386160, 124696740, 508250988, 2061566400, 8331954240, 33585590580, 135115594140, 542784981552, 2178107091600, 8733341736900, 34996103558988, 140172672276000, 561255446475360, 2246716252964820, 8991948337723260, 35983044114659472, 143977928423467440, 576048972752188260, 2304607666801990188, 9219666007300387200, 36882370043723748480
OFFSET
1,4
COMMENTS
If the row is achiral, i.e., the same as its reverse, we ignore it. If different from its reverse, we count it and its reverse as a chiral pair.
FORMULA
a(n) = (k!/2) * (S2(n,k) - S2(ceiling(n/2),k)), with k=4 colors used and where S2(n,k) is the Stirling subset number A008277.
a(n) = (A000919(n) - A056455(n)) / 2.
a(n) = A000919(n) - A056311(n) = A056311(n) - A056455(n).
G.f.: -(k!/2) * (x^(2k-1) + x^(2k)) / Product_{j=1..k} (1 - j*x^2) + (k!/2) * x^k / Product_{j=1..k} (1 - j*x) with k=4 colors used.
EXAMPLE
For a(4) = 12, the chiral pairs are the 4! = 24 permutations of ABCD, each paired with its reverse.
MATHEMATICA
k=4; Table[(k!/2) (StirlingS2[n, k] - StirlingS2[Ceiling[n/2], k]), {n, 1, 40}]
PROG
(PARI) a(n) = my(k=4); (k!/2) * (stirling(n, k, 2) - stirling(ceil(n/2), k, 2)); \\ Michel Marcus, Jun 07 2018
CROSSREFS
Fourth column of A305622.
A056455(n) is number of achiral rows of n colors with exactly 4 different colors.
Sequence in context: A001816 A354697 A133386 * A056320 A056311 A009050
KEYWORD
nonn,easy
AUTHOR
Robert A. Russell, Jun 06 2018
STATUS
approved