OFFSET
0,3
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..250
FORMULA
a(n) = 2*Sum_{k=1..n-1} binomial(2*n,2*k)*(4^(n-2*k)*(-1)^(k)* Sum_{i=0..k-1} (i-k)^(2*n-2*k)*binomial(2*k,i)*(-1)^(n-i)), n>0, a(0)=1. - Vladimir Kruchinin, Jun 30 2011
MAPLE
seq(coeff(series(factorial(n)*cos(x*sin(x)), x, n+1), x, n), n=0..40, 2); # Muniru A Asiru, Jul 24 2018
MATHEMATICA
With[{nmax = 60}, CoefficientList[Series[Cos[x*Sin[x]], {x, 0, nmax}], x]*Range[0, nmax]!][[1 ;; -1 ;; 2]] (* G. C. Greubel, Jul 23 2018 *)
PROG
(Maxima)
a(n):=if n=0 then 1 else 2*sum(binomial(2*n, 2*k)*(4^(n-2*k)*(-1)^(k)*sum((i-k)^(2*n-2*k)*binomial(2*k, i)*(-1)^(n-i), i, 0, k-1)), k, 1, n-1); /* Vladimir Kruchinin, Jun 30 2011 */
(PARI) x='x+O('x^60); v=Vec(serlaplace(cos(x*sin(x)))); vector(#v\2, n, v[2*n-1]) \\ G. C. Greubel, Jul 23 2018
(GAP) Concatenation([1], List([1..15], n->2*Sum([1..n-1], k->Binomial(2*n, 2*k)*(4^(n-2*k)*(-1)^k)*Sum([0..k-1], i->(i-k)^(2*n-2*k)*Binomial(2*k, i)*(-1)^(n-i))))); # Muniru A Asiru, Jul 24 2018
CROSSREFS
KEYWORD
sign
AUTHOR
EXTENSIONS
Extended with signs by Olivier Gérard, Mar 15 1997
STATUS
approved