login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A009050
Expansion of e.g.f. cos(x*sin(x)) (even power only).
1
1, 0, -12, 120, 784, -95040, 3292608, -9423232, -9230042880, 890079012864, -40083887897600, -2468650419873792, 837675174905843712, -109581967679961088000, 5834566862721760149504
OFFSET
0,3
LINKS
FORMULA
a(n) = 2*Sum_{k=1..n-1} binomial(2*n,2*k)*(4^(n-2*k)*(-1)^(k)* Sum_{i=0..k-1} (i-k)^(2*n-2*k)*binomial(2*k,i)*(-1)^(n-i)), n>0, a(0)=1. - Vladimir Kruchinin, Jun 30 2011
MAPLE
seq(coeff(series(factorial(n)*cos(x*sin(x)), x, n+1), x, n), n=0..40, 2); # Muniru A Asiru, Jul 24 2018
MATHEMATICA
With[{nmax = 60}, CoefficientList[Series[Cos[x*Sin[x]], {x, 0, nmax}], x]*Range[0, nmax]!][[1 ;; -1 ;; 2]] (* G. C. Greubel, Jul 23 2018 *)
PROG
(Maxima)
a(n):=if n=0 then 1 else 2*sum(binomial(2*n, 2*k)*(4^(n-2*k)*(-1)^(k)*sum((i-k)^(2*n-2*k)*binomial(2*k, i)*(-1)^(n-i), i, 0, k-1)), k, 1, n-1); /* Vladimir Kruchinin, Jun 30 2011 */
(PARI) x='x+O('x^60); v=Vec(serlaplace(cos(x*sin(x)))); vector(#v\2, n, v[2*n-1]) \\ G. C. Greubel, Jul 23 2018
(GAP) Concatenation([1], List([1..15], n->2*Sum([1..n-1], k->Binomial(2*n, 2*k)*(4^(n-2*k)*(-1)^k)*Sum([0..k-1], i->(i-k)^(2*n-2*k)*Binomial(2*k, i)*(-1)^(n-i))))); # Muniru A Asiru, Jul 24 2018
CROSSREFS
Sequence in context: A305624 A056320 A056311 * A067358 A268634 A061506
KEYWORD
sign
AUTHOR
EXTENSIONS
Extended with signs by Olivier Gérard, Mar 15 1997
STATUS
approved