login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A061506
a(n) = lcm(6n+2, 6n+4, 6n+6).
1
12, 120, 1008, 1320, 5460, 4896, 15960, 12144, 35100, 24360, 65472, 42840, 109668, 68880, 170280, 103776, 249900, 148824, 351120, 205320, 476532, 274560, 628728, 357840, 810300, 456456, 1023840, 571704, 1271940, 704880, 1557192, 857280, 1882188, 1030200
OFFSET
0,1
FORMULA
G.f.: (120*x^6 + 336*x^5 + 1500*x^4 + 840*x^3 + 960*x^2 + 120*x + 12)/((x-1)^4*(x+1)^4). - Maksym Voznyy (voznyy(AT)mail.ru), Jul 27 2009
a(n) = 4*a(n-2) - 6*a(n-4) + 4*a(n-6) - a(n-8), a(0)=12, a(1)=120, a(2)=1008, a(3)=1320, a(4)=5460, a(5)=4896, a(6)=15960, a(7)=12144. - Harvey P. Dale, Oct 22 2012
From Colin Barker, Mar 13 2017: (Start)
a(n) = 6*(3*n + 1)*(3*n + 2)*(n + 1) for n even.
a(n) = 3*(3*n + 1)*(3*n + 2)*(n + 1) for n odd.
(End)
From Amiram Eldar, Oct 08 2023: (Start)
Sum_{n>=0} 1/a(n) = 11*sqrt(3)*Pi/144 - log(2)/6 - 3*log(3)/16.
Sum_{n>=0} (-1)^n/a(n) = log(3)/16 + log(2)/2 - Pi*sqrt(3)/16. (End)
EXAMPLE
lcm(2, 4, 6) = 12; lcm(8, 10, 12) = 120.
MATHEMATICA
Table[LCM@@(6n+{2, 4, 6}), {n, 0, 40}] (* or *) LinearRecurrence[ {0, 4, 0, -6, 0, 4, 0, -1}, {12, 120, 1008, 1320, 5460, 4896, 15960, 12144}, 40] (* Harvey P. Dale, Oct 22 2012 *)
PROG
(PARI) Vec(12*(1 + 10*x + 80*x^2 + 70*x^3 + 125*x^4 + 28*x^5 + 10*x^6) / ((1 - x)^4*(1 + x)^4) + O(x^50)) \\ Colin Barker, Mar 13 2017
(Magma) [Lcm([6*n+2, 6*n+4, 6*n+6]): n in [0..35]]; // Vincenzo Librandi, Mar 18 2018
CROSSREFS
Cf. A005843.
Sequence in context: A009050 A067358 A268634 * A059155 A012443 A012274
KEYWORD
easy,nonn
AUTHOR
Jason Earls, Jun 12 2001
STATUS
approved