This site is supported by donations to The OEIS Foundation.

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A061503 Sum_{k<=n} (tau(k^2)), where tau is the number of divisors function A000005. 5
 1, 4, 7, 12, 15, 24, 27, 34, 39, 48, 51, 66, 69, 78, 87, 96, 99, 114, 117, 132, 141, 150, 153, 174, 179, 188, 195, 210, 213, 240, 243, 254, 263, 272, 281, 306, 309, 318, 327, 348, 351, 378, 381, 396, 411, 420, 423, 450, 455, 470, 479, 494, 497 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 REFERENCES Mentioned by Steven Finch in a posting to the Number Theory List (NMBRTHRY(AT)LISTSERV.NODAK.EDU), Jun 13 2001. LINKS Harry J. Smith, Table of n, a(n) for n = 1..1024 Kevin A. Broughan, Restricted divisor sums, Acta Arithmetica, vol. 101, (2002), pp. 105-114. FORMULA a(n) = Sum_{1<=j<=n^2} (floor(n/A019554(j))), - Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Jul 20 2002 a(n) = Sum(i=1..n, 2^omega(i) * floor(n/i)) . - Enrique Pérez Herrero, Sep 15 2012 a(n) ~ 3/Pi^2 * n log^2 n. - Charles R Greathouse IV, Nov 08 2012 MATHEMATICA DivisorSigma[0, Range[60]^2] // Accumulate (* Jean-François Alcover, Nov 25 2013 *) PROG (PARI) for (n=1, 1024, write("b061503.txt", n, " ", sum(k=1, n, numdiv(k^2)))) \\ Harry J. Smith, Jul 23 2009 (PARI) t=0; v=vector(60, n, t+=numdiv(n^2)) \\ Charles R Greathouse IV, Nov 08 2012 (Sage) def A061503(n) :     tau = sloane.A000005     return add(tau(k^2) for k in (1..n)) [ A061503(i) for i in (1..19)] # Peter Luschny, Sep 15 2012 CROSSREFS Cf. A000005, A061502. Partial sums of A048691. Sequence in context: A047535 A182989 A190442 * A134659 A075624 A008333 Adjacent sequences:  A061500 A061501 A061502 * A061504 A061505 A061506 KEYWORD nonn AUTHOR N. J. A. Sloane, Jun 14 2001 EXTENSIONS Name corrected by Peter Luschny, Sep 15 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.