login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A056311
Number of reversible strings with n beads using exactly four different colors.
5
0, 0, 0, 12, 120, 780, 4212, 20424, 93360, 409380, 1749780, 7338792, 30394560, 124705140, 508291812, 2061607224, 8332140720, 33585777060, 135116412660, 542785800072, 2178110589600, 8733345234900
OFFSET
1,4
COMMENTS
A string and its reverse are considered to be equivalent.
REFERENCES
M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
LINKS
FORMULA
Equals A032121(n) - 4*A032120(n) + 6*A005418(n+1) - 4.
G.f.: 12*x^4*(3*x+1)*(8*x^4-3*x^3-2*x^2-x+1)/ ((x-1) * (4*x-1) * (3*x-1) * (2*x+1) * (2*x -1) * (3*x^2-1) * (2*x^2-1)). - Maksym Voznyy (voznyy(AT)mail.ru), Jul 27 2009 [Corrected by R. J. Mathar, Sep 16 2009]
a(n) = k! (S2(n,k) + S2(ceiling(n/2),k)) / 2, where k=4 is the number of colors and S2 is the Stirling subset number. - Robert A. Russell, Sep 25 2018
EXAMPLE
For n=4, the 12 rows are 12 permutations of ABCD that do not include any mutual reversals. Each of the 12 chiral pairs, such as ABCD-DCBA, is then counted just once. - Robert A. Russell, Sep 25 2018
MATHEMATICA
k=4; Table[(StirlingS2[i, k]+StirlingS2[Ceiling[i/2], k])k!/2, {i, k, 30}] (* Robert A. Russell, Nov 25 2017 *)
CoefficientList[Series[12 x^3 (3 x + 1) (8 x^4 - 3 x^3 - 2 x^2 - x + 1) / ((x - 1) (4 x - 1) (3 x - 1) (2 x + 1) (2 x - 1) (3 x^2 - 1) (2 x^2 - 1)), {x, 0, 33}], x] (* Vincenzo Librandi, Sep 26 2018 *)
CROSSREFS
Cf. A032121.
Column 4 of A305621.
Equals (A000919 + A056455) / 2 = A000919 - A305624 = A305624 + A056455.
Sequence in context: A133386 A305624 A056320 * A009050 A067358 A268634
KEYWORD
nonn
STATUS
approved