login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A032121
Number of reversible strings with n beads of 4 colors.
10
1, 4, 10, 40, 136, 544, 2080, 8320, 32896, 131584, 524800, 2099200, 8390656, 33562624, 134225920, 536903680, 2147516416, 8590065664, 34359869440, 137439477760, 549756338176, 2199025352704, 8796095119360, 35184380477440, 140737496743936, 562949986975744
OFFSET
0,2
COMMENTS
Also the number of 4-ary strings of length m = n+1 with number of 1's, 2's and 3's all even. Bijective proof, anyone? - Frank Ruskey, Jul 14 2002
LINKS
Christian Barrientos, Sarah Minion, Series-Parallel Operations with Alpha-Graphs, Theory and Applications of Graphs (2019) Vol. 6, Issue 1, Article 4.
C. G. Bower, Transforms (2)
FORMULA
"BIK" (reversible, indistinct, unlabeled) transform of 4, 0, 0, 0, ...
a(n) = (4^m+3*2^m+(-2)^m)/8, where m = n+1. - Frank Ruskey, Jul 14 2002
G.f.: (1-10x^2) / ((1-4x)*(1-4x^2)). - Maksym Voznyy (voznyy(AT)mail.ru), Jul 27 2009; corrected by R. J. Mathar, Sep 16 2009 [Adapted to offset 0 by Robert A. Russell, Nov 10 2018]
From Colin Barker, Nov 25 2017: (Start)
a(n) = 2^(n-2) * (3 + (-1)^(1+n) + 2^(1+n)).
a(n) = 4*a(n-1) + 4*a(n-2) - 16*a(n-3) for n>2.
(End)
a(n) = (4^n + 4^floor((n+1)/2)) / 2 = (A000302(n) + A056450(n)) / 2. - Robert A. Russell and Danny Rorabaugh, Jun 22 2018
E.g.f.: (1/4)*exp(-2*x)*(- 1 + 3*exp(4*x) + 2*exp(6*x)). - Stefano Spezia, Nov 12 2018
EXAMPLE
a(2) = 10 = |{000, 110,101,011, 220,202,022, 330,303,033}|.
MATHEMATICA
k = 4; Table[(k^n + k^Ceiling[n/2])/2, {n, 0, 30}] (* Robert A. Russell, Nov 25 2017 *)
LinearRecurrence[{4, 4, -16}, {1, 4, 10}, 31] (* Robert A. Russell, Nov 10 2018 *)
CoefficientList[Series[1/4 E^(-2 x) (-1 + 3 E^(4 x) + 2 E^(6 x)), {x, 0, 20}], x]*Table[n!, {n, 0, 20}] (* Stefano Spezia, Nov 12 2018 *)
PROG
(PARI) Vec((1-10*x^2) / ((1 - 2*x)*(1 + 2*x)*(1 - 4*x)) + O(x^40)) \\ Colin Barker, Nov 25 2017
CROSSREFS
Column 4 of A277504.
Cf. A000302 (oriented), A032087(n>1) (chiral), A056450 (achiral).
Sequence in context: A149208 A149209 A053792 * A149210 A149211 A149212
KEYWORD
nonn,easy
EXTENSIONS
a(0) = 1 prepended by Robert A. Russell, Nov 10 2018
STATUS
approved