OFFSET
0,3
COMMENTS
It appears that a(n) is also the number of quivers in the mutation class of affine B_n or affine type C_n for n>=2. [Christian Stump, Nov 02 2010]
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
C. G. Bower, Transforms (2)
N. J. A. Sloane, Classic Sequences
FORMULA
a(2n+1) = binomial(4n+1,2n) = A002458(n). a(2n) = binomial(4n-1,2n-1)+binomial(2n-1,n-1), n>0.
"BIK[ n ](2n-1)" (reversible, indistinct, unlabeled, n parts, 2n-1 elements) transform of 1, 1, 1, 1...
E.g.f.: exp(x)*cosh(x)*BesselI(0, 2*x). - Vladeta Jovovic, Apr 07 2005
G.f.: (1/2)*((1-4*x)^(-1/2)+(1-4*x^2)^(-1/2)). - Mark van Hoeij, Oct 30 2011
Conjecture: D-finite with recurrence n*(n-1)*a(n) -2*(n-1)*(3*n-4)*a(n-1) +4*(2*n^2-14*n+19)*a(n-2) +8*(n^2+5*n-19)*a(n-3) -16*(n-3)*(3*n-10)*a(n-4) +32*(n-4)*(2*n-9)*a(n-5)=0, n>5. - R. J. Mathar, Nov 09 2013
a(n) ~ 2^(2*n-1)/sqrt(Pi*n). - Vaclav Kotesovec, Mar 29 2014
MATHEMATICA
With[{nn = 50}, CoefficientList[Series[Exp[x]*Cosh[x]*BesselI[0, 2*x], {x, 0, nn}], x] Range[0, nn]!] (* G. C. Greubel, Feb 15 2017 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved