This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A032123 Number of 2n-bead black-white reversible strings with n black beads. 2
 1, 1, 4, 10, 38, 126, 472, 1716, 6470, 24310, 92504, 352716, 1352540, 5200300, 20060016, 77558760, 300546630, 1166803110, 4537591960, 17672631900, 68923356788, 269128937220, 1052049834576, 4116715363800 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS It appears that a(n) is also the number of quivers in the mutation class of affine B_n or affine type C_n for n>=2. [Christian Stump, Nov 02 2010] LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 C. G. Bower, Transforms (2) N. J. A. Sloane, Classic Sequences FORMULA n odd: C(2n-1, n-1); n even: C(2n-1, n-1) + C(n-1, n/2-1) "BIK[ n ](2n-1)" (reversible, indistinct, unlabeled, n parts, 2n-1 elements) transform of 1, 1, 1, 1... E.g.f.: exp(x)*cosh(x)*BesselI(0, 2*x). - Vladeta Jovovic, Apr 07 2005 G.f.: (1/2)*((1-4*x)^(-1/2)+(1-4*x^2)^(-1/2))   - Mark van Hoeij, Oct 30 2011. Conjecture: n*(n-1)*a(n) -2*(n-1)*(3*n-4)*a(n-1) +4*(2*n^2-14*n+19)*a(n-2) +8*(n^2+5*n-19)*a(n-3) -16*(n-3)*(3*n-10)*a(n-4) +32*(n-4)*(2*n-9)*a(n-5)=0, n>5. - R. J. Mathar, Nov 09 2013 a(n) ~ 2^(2*n-1)/sqrt(Pi*n). - Vaclav Kotesovec, Mar 29 2014 MATHEMATICA With[{nn = 50}, CoefficientList[Series[Exp[x]*Cosh[x]*BesselI[0, 2*x], {x, 0, nn}], x] Range[0, nn]!] (* G. C. Greubel, Feb 15 2017 *) CROSSREFS Central column of Losanitsch's triangle A034851. Sequence in context: A197051 A149191 A149192 * A149193 A149194 A149195 Adjacent sequences:  A032120 A032121 A032122 * A032124 A032125 A032126 KEYWORD nonn AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.