login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A032123
Number of 2n-bead black-white reversible strings with n black beads.
2
1, 1, 4, 10, 38, 126, 472, 1716, 6470, 24310, 92504, 352716, 1352540, 5200300, 20060016, 77558760, 300546630, 1166803110, 4537591960, 17672631900, 68923356788, 269128937220, 1052049834576, 4116715363800, 16123803193628, 63205303218876, 247959271674352, 973469712824056
OFFSET
0,3
COMMENTS
It appears that a(n) is also the number of quivers in the mutation class of affine B_n or affine type C_n for n>=2. [Christian Stump, Nov 02 2010]
LINKS
C. G. Bower, Transforms (2)
N. J. A. Sloane, Classic Sequences
FORMULA
a(2n+1) = binomial(4n+1,2n) = A002458(n). a(2n) = binomial(4n-1,2n-1)+binomial(2n-1,n-1), n>0.
"BIK[ n ](2n-1)" (reversible, indistinct, unlabeled, n parts, 2n-1 elements) transform of 1, 1, 1, 1...
E.g.f.: exp(x)*cosh(x)*BesselI(0, 2*x). - Vladeta Jovovic, Apr 07 2005
G.f.: (1/2)*((1-4*x)^(-1/2)+(1-4*x^2)^(-1/2)). - Mark van Hoeij, Oct 30 2011
Conjecture: D-finite with recurrence n*(n-1)*a(n) -2*(n-1)*(3*n-4)*a(n-1) +4*(2*n^2-14*n+19)*a(n-2) +8*(n^2+5*n-19)*a(n-3) -16*(n-3)*(3*n-10)*a(n-4) +32*(n-4)*(2*n-9)*a(n-5)=0, n>5. - R. J. Mathar, Nov 09 2013
a(n) ~ 2^(2*n-1)/sqrt(Pi*n). - Vaclav Kotesovec, Mar 29 2014
MATHEMATICA
With[{nn = 50}, CoefficientList[Series[Exp[x]*Cosh[x]*BesselI[0, 2*x], {x, 0, nn}], x] Range[0, nn]!] (* G. C. Greubel, Feb 15 2017 *)
CROSSREFS
Central column of Losanitsch's triangle A034851.
Cf. A002458 (bisection).
Sequence in context: A197051 A149191 A149192 * A149193 A149194 A149195
KEYWORD
nonn
STATUS
approved