OFFSET
1,1
COMMENTS
Number of solutions (x,y,z) to x+y+z = 2^n, x>=0, y>=0, z>=0, gcd(x,y,z)=1. - Vladeta Jovovic, Dec 22 2002
LINKS
Harvey P. Dale, Table of n, a(n) for n = 1..1000
C. G. Bower, Transforms (2)
Index entries for linear recurrences with constant coefficients, signature (6,-8)
FORMULA
a(n) = 3*2^(n-2)*(2^(n-1)+1). - Vladeta Jovovic, Dec 22 2002
Binomial transform of A067771 (if the offset is changed to 0). - Carl Najafi, Sep 09 2011
G.f. -3*x*(-1+3*x) / ( (4*x-1)*(2*x-1) ). a(n)=3*A007582(n-1). - R. J. Mathar, Sep 11 2011
a(1)=3, a(2)=9, a(n) = 6*a(n-1)-8*a(n-2). [Harvey P. Dale, Jan 01 2012]
E.g.f.: (3/8)*(exp(4*x) + 2*exp(2*x) - 3). - G. C. Greubel, Aug 22 2015
MATHEMATICA
Table[3*2^(n-2)(2^(n-1)+1), {n, 30}] (* or *) LinearRecurrence[{6, -8}, {3, 9}, 30] (* Harvey P. Dale, Jan 01 2012 *)
RecurrenceTable[{a[0]== 3, a[1]== 9, a[n]== 6*a[n-1] - 8*a[n-2]}, a, {n, 50}] (* G. C. Greubel, Aug 22 2015 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved