login
A032125
"BIK" (reversible, indistinct, unlabeled) transform of 3,3,3,3...
3
3, 9, 30, 108, 408, 1584, 6240, 24768, 98688, 393984, 1574400, 6294528, 25171968, 100675584, 402677760, 1610661888, 6442549248, 25770000384, 103079608320, 412317646848, 1649269014528, 6597072912384, 26388285358080, 105553128849408
OFFSET
1,1
COMMENTS
Number of solutions (x,y,z) to x+y+z = 2^n, x>=0, y>=0, z>=0, gcd(x,y,z)=1. - Vladeta Jovovic, Dec 22 2002
FORMULA
a(n) = 3*2^(n-2)*(2^(n-1)+1). - Vladeta Jovovic, Dec 22 2002
Binomial transform of A067771 (if the offset is changed to 0). - Carl Najafi, Sep 09 2011
G.f. -3*x*(-1+3*x) / ( (4*x-1)*(2*x-1) ). a(n)=3*A007582(n-1). - R. J. Mathar, Sep 11 2011
a(1)=3, a(2)=9, a(n) = 6*a(n-1)-8*a(n-2). [Harvey P. Dale, Jan 01 2012]
E.g.f.: (3/8)*(exp(4*x) + 2*exp(2*x) - 3). - G. C. Greubel, Aug 22 2015
MATHEMATICA
Table[3*2^(n-2)(2^(n-1)+1), {n, 30}] (* or *) LinearRecurrence[{6, -8}, {3, 9}, 30] (* Harvey P. Dale, Jan 01 2012 *)
RecurrenceTable[{a[0]== 3, a[1]== 9, a[n]== 6*a[n-1] - 8*a[n-2]}, a, {n, 50}] (* G. C. Greubel, Aug 22 2015 *)
CROSSREFS
a(n) = A048240(2^n).
Sequence in context: A128725 A099783 A200074 * A246472 A091699 A129167
KEYWORD
nonn,easy
STATUS
approved