OFFSET
0,2
COMMENTS
This is the number of ways to choose a pair of elements (x,y) of P(n) so that x is a subset of y. This also gives the number of covariant functors from P(1) to P(n) viewed as categories.
FORMULA
a(n) = Sum_{i=0..n} (binomial(n,i)*(1 + Sum_{j=i+1..n} binomial(n,j))).
a(n) = 2^(2*n-1) + 2^n - binomial(2*n, n)/2. - Vaclav Kotesovec, Aug 28 2014
n*(n-4)*a(n) +2*(-5*n^2+23*n-15)*a(n-1) +4*(8*n^2-41*n+45)*a(n-2) -16*(2*n-5)*(n-3)*a(n-3)=0. - R. J. Mathar, Jul 15 2017
MATHEMATICA
Sum[Binomial[#, i](1+ Sum[Binomial[#, j], {j, i+1, #}]), {i, 0, #}]& /@ Range[0, 20]
PROG
(PARI) a(n) = sum(i=0, n, binomial(n, i)*(1+ sum(j = i+1, n, binomial(n, j)))); \\ Michel Marcus, Aug 27 2014
CROSSREFS
KEYWORD
nonn
AUTHOR
Jesse Han, Aug 27 2014
STATUS
approved