login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A246472
Number of order-preserving (monotone) functions from the power set of 1 = {0} to the power set of n = {0, ..., n-1}.
0
1, 3, 9, 30, 109, 418, 1650, 6604, 26589, 107274, 432934, 1746484, 7040626, 28362324, 114175812, 459344920, 1847008989, 7423262554, 29822432862, 119766845860, 480833598054, 1929896415484, 7744047734652, 31067665113640, 124613703290994, 499744683756868
OFFSET
0,2
COMMENTS
This is the number of ways to choose a pair of elements (x,y) of P(n) so that x is a subset of y. This also gives the number of covariant functors from P(1) to P(n) viewed as categories.
FORMULA
a(n) = Sum_{i=0..n} (binomial(n,i)*(1 + Sum_{j=i+1..n} binomial(n,j))).
a(n) = 2^(2*n-1) + 2^n - binomial(2*n, n)/2. - Vaclav Kotesovec, Aug 28 2014
n*(n-4)*a(n) +2*(-5*n^2+23*n-15)*a(n-1) +4*(8*n^2-41*n+45)*a(n-2) -16*(2*n-5)*(n-3)*a(n-3)=0. - R. J. Mathar, Jul 15 2017
MATHEMATICA
Sum[Binomial[#, i](1+ Sum[Binomial[#, j], {j, i+1, #}]), {i, 0, #}]& /@ Range[0, 20]
PROG
(PARI) a(n) = sum(i=0, n, binomial(n, i)*(1+ sum(j = i+1, n, binomial(n, j)))); \\ Michel Marcus, Aug 27 2014
CROSSREFS
Matches A129167 with offset 2 for the first four terms.
Sequence in context: A099783 A200074 A032125 * A091699 A129167 A151472
KEYWORD
nonn
AUTHOR
Jesse Han, Aug 27 2014
STATUS
approved