login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of 2n-bead black-white reversible strings with n black beads.
2

%I #37 Feb 15 2023 09:35:45

%S 1,1,4,10,38,126,472,1716,6470,24310,92504,352716,1352540,5200300,

%T 20060016,77558760,300546630,1166803110,4537591960,17672631900,

%U 68923356788,269128937220,1052049834576,4116715363800,16123803193628,63205303218876,247959271674352,973469712824056

%N Number of 2n-bead black-white reversible strings with n black beads.

%C It appears that a(n) is also the number of quivers in the mutation class of affine B_n or affine type C_n for n>=2. [_Christian Stump_, Nov 02 2010]

%H G. C. Greubel, <a href="/A032123/b032123.txt">Table of n, a(n) for n = 0..1000</a>

%H C. G. Bower, <a href="/transforms2.html">Transforms (2)</a>

%H N. J. A. Sloane, <a href="/classic.html#LOSS">Classic Sequences</a>

%F a(2n+1) = binomial(4n+1,2n) = A002458(n). a(2n) = binomial(4n-1,2n-1)+binomial(2n-1,n-1), n>0.

%F "BIK[ n ](2n-1)" (reversible, indistinct, unlabeled, n parts, 2n-1 elements) transform of 1, 1, 1, 1...

%F E.g.f.: exp(x)*cosh(x)*BesselI(0, 2*x). - _Vladeta Jovovic_, Apr 07 2005

%F G.f.: (1/2)*((1-4*x)^(-1/2)+(1-4*x^2)^(-1/2)). - _Mark van Hoeij_, Oct 30 2011

%F Conjecture: D-finite with recurrence n*(n-1)*a(n) -2*(n-1)*(3*n-4)*a(n-1) +4*(2*n^2-14*n+19)*a(n-2) +8*(n^2+5*n-19)*a(n-3) -16*(n-3)*(3*n-10)*a(n-4) +32*(n-4)*(2*n-9)*a(n-5)=0, n>5. - _R. J. Mathar_, Nov 09 2013

%F a(n) ~ 2^(2*n-1)/sqrt(Pi*n). - _Vaclav Kotesovec_, Mar 29 2014

%t With[{nn = 50}, CoefficientList[Series[Exp[x]*Cosh[x]*BesselI[0, 2*x], {x, 0, nn}], x] Range[0, nn]!] (* _G. C. Greubel_, Feb 15 2017 *)

%Y Central column of Losanitsch's triangle A034851.

%Y Cf. A002458 (bisection).

%K nonn

%O 0,3

%A _Christian G. Bower_