login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A032120
Number of reversible strings with n beads of 3 colors.
11
1, 3, 6, 18, 45, 135, 378, 1134, 3321, 9963, 29646, 88938, 266085, 798255, 2392578, 7177734, 21526641, 64579923, 193720086, 581160258, 1743421725, 5230265175, 15690618378, 47071855134, 141215033961, 423645101883
OFFSET
0,2
COMMENTS
"BIK" (reversible, indistinct, unlabeled) transform of 3, 0, 0, 0, ...
FORMULA
a(n) = (1/2)*((2-(-1)^n)*3^floor(n/2) + 3^n). - Ralf Stephan, May 11 2004
For n>0, a(n) = 3 * A001444(n-1). - N. J. A. Sloane, Sep 22 2004
From Colin Barker, Apr 02 2012: (Start)
a(n) = 3*a(n-1) + 3*a(n-2) - 9*a(n-3).
G.f.: (1-6x^2) / ((1-3x)*(1-3x^2)). (End) [Adapted to offset 0 by Robert A. Russell, Nov 10 2018]
a(n) = (1/2)*(3^(ceiling(n/2)) + 3^n). - Andrew Howroyd, Oct 10 2017
a(n) = (A000244(n) + A056449(n)) / 2. - Robert A. Russell, Nov 10 2018
EXAMPLE
For a(2)=10, the four achiral strings are AA, BB, CC, and DD; the 6 (equivalent) chiral pairs are AB-BA, AC-CA, AD-DA, BC-CB, BD-DB, and CD-DC.
MATHEMATICA
f[n_] := If[EvenQ[n], (3^n + 3^(n/2))/2, (3^n + 3^Ceiling[n/2])/2];
Table[f[n], {n, 0, 25}] (* Geoffrey Critzer, Apr 24 2011 *)
CoefficientList[Series[(1-6x^2)/((1-3x) (1-3x^2)), {x, 0, 30}], x] (* Vincenzo Librandi, Apr 22 2012 *) (* Adapted to offset 0 by Robert A. Russell, Nov 10 2018 *)
Table[(1/2) ((2 - (-1)^n) 3^Floor[n/2] + 3^n), {n, 0, 25}]. (* Bruno Berselli, Apr 22 2012 *)
LinearRecurrence[{3, 3, -9}, {1, 3, 6}, 31] (* Robert A. Russell, Nov 10 2018 *)
PROG
(Magma) I:=[1, 3, 6]; [n le 3 select I[n] else 3*Self(n-1)+3*Self(n-2)-9*Self(n-3): n in [1..25]]; // Vincenzo Librandi, Apr 22 2012
(PARI) a(n) = (3^n + 3^(ceil(n/2)))/2; \\ Andrew Howroyd, Oct 10 2017
CROSSREFS
Column 3 of A277504.
Cf. A000244 (oriented), A032086(n>1) (chiral), A056449 (achiral).
Sequence in context: A121188 A331678 A120718 * A115344 A223044 A317078
KEYWORD
nonn,easy
EXTENSIONS
a(0)=1 prepended by Robert A. Russell, Nov 10 2018
STATUS
approved