login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A120718
Expansion of 3*x/(1 - 2*x^2 - 2*x + x^3).
1
0, 3, 6, 18, 45, 120, 312, 819, 2142, 5610, 14685, 38448, 100656, 263523, 689910, 1806210, 4728717, 12379944, 32411112, 84853395, 222149070, 581593818, 1522632381, 3986303328, 10436277600, 27322529475, 71531310822, 187271402994, 490282898157, 1283577291480
OFFSET
0,2
FORMULA
a(n) = 3*A001654(n). - Arkadiusz Wesolowski, Sep 15 2012
From Colin Barker, Oct 01 2016: (Start)
a(n) = 2*a(n-1) + 2*a(n-2) - a(n-3) for n>2.
a(n) = (3/2^(n+1))*( (1-sqrt(5))*(3-sqrt(5))^n + (1+sqrt(5))*(3+sqrt(5))^n + (-2)^(n+1) )/5. (End)
a(n) = (3/5)*(Lucas(2*n+1) - (-1)^n). - G. C. Greubel, Jul 21 2023
MATHEMATICA
LinearRecurrence[{2, 2, -1}, {0, 3, 6}, 60] (* Vladimir Joseph Stephan Orlovsky, Feb 13 2012 *)
CoefficientList[Series[3x/(1-2x^2-2x+x^3), {x, 0, 30}], x] (* Harvey P. Dale, Sep 06 2024 *)
PROG
(PARI) a(n) = 3*(fibonacci(2*n+2) + fibonacci(2*n) - (-1)^n)/5 \\ Colin Barker, Oct 01 2016
(PARI) concat(0, Vec(3*x/(1-2*x^2-2*x+x^3) + O(x^40))) \\ Colin Barker, Oct 01 2016
(Magma) [(3/5)*(Lucas(2*n+1) -(-1)^n): n in [0..40]]; // G. C. Greubel, Jul 21 2023
(SageMath) [(3/5)*(lucas_number2(2*n+1, 1, -1) -(-1)^n) for n in range(41)] # G. C. Greubel, Jul 21 2023
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Roger L. Bagula, Aug 13 2006
EXTENSIONS
Offset corrected by Arkadiusz Wesolowski, Sep 15 2012
STATUS
approved