OFFSET
0,2
LINKS
Colin Barker, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (2,2,-1).
FORMULA
a(n) = 3*A001654(n). - Arkadiusz Wesolowski, Sep 15 2012
From Colin Barker, Oct 01 2016: (Start)
a(n) = 2*a(n-1) + 2*a(n-2) - a(n-3) for n>2.
a(n) = (3/2^(n+1))*( (1-sqrt(5))*(3-sqrt(5))^n + (1+sqrt(5))*(3+sqrt(5))^n + (-2)^(n+1) )/5. (End)
a(n) = (3/5)*(Lucas(2*n+1) - (-1)^n). - G. C. Greubel, Jul 21 2023
MATHEMATICA
LinearRecurrence[{2, 2, -1}, {0, 3, 6}, 60] (* Vladimir Joseph Stephan Orlovsky, Feb 13 2012 *)
CoefficientList[Series[3x/(1-2x^2-2x+x^3), {x, 0, 30}], x] (* Harvey P. Dale, Sep 06 2024 *)
PROG
(PARI) a(n) = 3*(fibonacci(2*n+2) + fibonacci(2*n) - (-1)^n)/5 \\ Colin Barker, Oct 01 2016
(PARI) concat(0, Vec(3*x/(1-2*x^2-2*x+x^3) + O(x^40))) \\ Colin Barker, Oct 01 2016
(Magma) [(3/5)*(Lucas(2*n+1) -(-1)^n): n in [0..40]]; // G. C. Greubel, Jul 21 2023
(SageMath) [(3/5)*(lucas_number2(2*n+1, 1, -1) -(-1)^n) for n in range(41)] # G. C. Greubel, Jul 21 2023
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Roger L. Bagula, Aug 13 2006
EXTENSIONS
Offset corrected by Arkadiusz Wesolowski, Sep 15 2012
STATUS
approved