login
A331678
Number of lone-child-avoiding locally disjoint rooted trees whose leaves are integer partitions whose multiset union is an integer partition of n.
9
1, 3, 6, 18, 44, 149, 450, 1573, 5352, 19283, 69483, 257206
OFFSET
1,2
COMMENTS
Lone-child-avoiding means there are no unary branchings. Locally disjoint means no child of any vertex has branches overlapping the branches of any other unequal child of the same vertex.
EXAMPLE
The a(1) = 1 through a(4) = 18 trees:
(1) (2) (3) (4)
(11) (12) (13)
((1)(1)) (111) (22)
((1)(2)) (112)
((1)(1)(1)) (1111)
((1)((1)(1))) ((1)(3))
((2)(2))
((2)(11))
((11)(11))
((1)(1)(2))
((1)((1)(2)))
((2)((1)(1)))
((1)(1)(1)(1))
((11)((1)(1)))
((1)((1)(1)(1)))
((1)(1)((1)(1)))
(((1)(1))((1)(1)))
((1)((1)((1)(1))))
MATHEMATICA
sps[{}]:={{}}; sps[set:{i_, ___}]:=Join@@Function[s, Prepend[#, s]&/@sps[Complement[set, s]]]/@Cases[Subsets[set], {i, ___}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
disjointQ[u_]:=Apply[And, Outer[#1==#2||Intersection[#1, #2]=={}&, u, u, 1], {0, 1}];
mpti[m_]:=Prepend[Join@@Table[Select[Union[Sort/@Tuples[mpti/@p]], disjointQ], {p, Select[mps[m], Length[#]>1&]}], m];
Table[Sum[Length[mpti[m]], {m, Sort/@IntegerPartitions[n]}], {n, 8}]
CROSSREFS
The case where all leaves are singletons is A316696.
The case where all leaves are (1) is A316697.
The non-locally disjoint version is A319312.
The case with all atoms equal to 1 is A331679.
The identity tree case is A331686.
Sequence in context: A197050 A354387 A121188 * A120718 A032120 A115344
KEYWORD
nonn,more
AUTHOR
Gus Wiseman, Jan 25 2020
STATUS
approved