OFFSET
1,2
COMMENTS
Lone-child-avoiding means there are no unary branchings. Locally disjoint means no child of any vertex has branches overlapping the branches of any other unequal child of the same vertex.
LINKS
David Callan, A sign-reversing involution to count labeled lone-child-avoiding trees, arXiv:1406.7784 [math.CO], (30-June-2014).
EXAMPLE
The a(1) = 1 through a(4) = 18 trees:
(1) (2) (3) (4)
(11) (12) (13)
((1)(1)) (111) (22)
((1)(2)) (112)
((1)(1)(1)) (1111)
((1)((1)(1))) ((1)(3))
((2)(2))
((2)(11))
((11)(11))
((1)(1)(2))
((1)((1)(2)))
((2)((1)(1)))
((1)(1)(1)(1))
((11)((1)(1)))
((1)((1)(1)(1)))
((1)(1)((1)(1)))
(((1)(1))((1)(1)))
((1)((1)((1)(1))))
MATHEMATICA
sps[{}]:={{}}; sps[set:{i_, ___}]:=Join@@Function[s, Prepend[#, s]&/@sps[Complement[set, s]]]/@Cases[Subsets[set], {i, ___}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
disjointQ[u_]:=Apply[And, Outer[#1==#2||Intersection[#1, #2]=={}&, u, u, 1], {0, 1}];
mpti[m_]:=Prepend[Join@@Table[Select[Union[Sort/@Tuples[mpti/@p]], disjointQ], {p, Select[mps[m], Length[#]>1&]}], m];
Table[Sum[Length[mpti[m]], {m, Sort/@IntegerPartitions[n]}], {n, 8}]
CROSSREFS
The case where all leaves are singletons is A316696.
The case where all leaves are (1) is A316697.
The non-locally disjoint version is A319312.
The case with all atoms equal to 1 is A331679.
The identity tree case is A331686.
KEYWORD
nonn,more
AUTHOR
Gus Wiseman, Jan 25 2020
STATUS
approved