OFFSET
1,1
LINKS
Andrew Howroyd, Table of n, a(n) for n = 1..200
C. G. Bower, Transforms (2)
Index entries for linear recurrences with constant coefficients, signature (3, 3, -9).
FORMULA
"BHK" (reversible, identity, unlabeled) transform of 3, 0, 0, 0, ...
Conjectures from Colin Barker, Apr 02 2012: (Start)
a(n) = 3*a(n-1) + 3*a(n-2) - 9*a(n-3) for n > 4.
G.f.: 3*x*(1 - 2*x - 3*x^2 + 9*x^3)/((1 - 3*x)*(1 - 3*x^2)).
(End)
Conjectures from Colin Barker, Mar 09 2017: (Start)
a(n) = (2*3^n - 2*3^(n/2)) / 4 for n > 2 and even.
a(n) = (2*3^n - 2*3^((n+1)/2)) / 4 for n > 2 and odd.
(End)
The above conjectures are true: The second set follows from the definition and the first set can be derived from that. - Andrew Howroyd, Oct 10 2017
a(n) = (3^n - 3^(ceiling(n/2))) / 2 = (A000244(n) - A056449(n)) / 2 for n>1. - Robert A. Russell and Danny Rorabaugh, Jun 22 2018
MATHEMATICA
Join[{3}, LinearRecurrence[{3, 3, -9}, {3, 9, 36}, 24]] (* Jean-François Alcover, Oct 11 2017 *)
PROG
(PARI) a(n) = if(n<2, [3][n], (3^n - 3^(ceil(n/2)))/2); \\ Andrew Howroyd, Oct 10 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved