login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A241278
Number of nX2 0..3 arrays with no element equal to one plus the sum of elements to its left or zero plus the sum of elements above it or one plus the sum of the elements diagonally to its northwest or one plus the sum of the elements antidiagonally to its northeast, modulo 4
1
3, 3, 9, 36, 139, 532, 2111, 8473, 34053, 136880, 550213, 2211810, 8891567, 35744766, 143696235, 577666729, 2322248891, 9335550407, 37529342193, 150869654682, 606502776180, 2438168211361, 9801544653549, 39402644818707, 158400380771179
OFFSET
1,1
COMMENTS
Column 2 of A241283
LINKS
FORMULA
Empirical: a(n) = 8*a(n-1) -20*a(n-2) +16*a(n-3) +4*a(n-4) -25*a(n-5) +53*a(n-6) -68*a(n-7) +100*a(n-8) -62*a(n-9) -41*a(n-10) +34*a(n-11) -117*a(n-12) +108*a(n-13) -54*a(n-14) +93*a(n-15) +41*a(n-16) +20*a(n-17) +8*a(n-18) -41*a(n-19) -26*a(n-20) -41*a(n-21) +9*a(n-22) +5*a(n-23) +2*a(n-24) +4*a(n-25) -13*a(n-26) +4*a(n-27) -3*a(n-28) -2*a(n-29) +4*a(n-30) +a(n-31)
EXAMPLE
Some solutions for n=4
..3..2....3..3....2..2....3..3....3..3....3..3....3..2....3..3....2..2....3..3
..0..3....2..2....0..0....2..2....2..2....2..2....0..3....2..2....0..0....2..2
..2..0....0..0....3..3....0..2....2..2....2..2....2..0....0..0....0..3....2..2
..2..2....2..2....3..3....0..2....0..2....2..0....2..0....0..2....3..3....0..0
CROSSREFS
Sequence in context: A202889 A257620 A032086 * A100239 A245023 A038080
KEYWORD
nonn
AUTHOR
R. H. Hardin, Apr 18 2014
STATUS
approved