login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A241275
a(n) = 6*a(n-1) + 5*(2^(n-1)-1) for n > 0, a(0) = 0.
1
0, 0, 5, 45, 305, 1905, 11585, 69825, 419585, 2518785, 15115265, 90696705, 544190465, 3265163265, 19591020545, 117546205185, 705277394945, 4231664697345, 25389988839425, 152339934347265, 914039608705025, 5484237657473025, 32905425955323905, 197432555752914945, 1184595334559432705, 7107572007440482305
OFFSET
0,3
COMMENTS
a(n) is the total number of holes in a pentaflake after n iterations. The number of irregular polygon-shaped holes is 5*A016200(n-3), n >= 3. The number of rhombic-shaped holes is 5*A016129(n-2), n >= 2 and equal to the first difference of a(n).
FORMULA
a(n) = 5*(A016129(n-2) + A016200(n-3)) for n >= 3, a(0)=a(1)=0, a(2)=5.
a(n) = 5*A016200(n-2) for n >= 2.
a(n) = 9*6^(n-2) - 5*2^(n-2) + 1.
a(n) = (4-5*2^n+6^n)/4. G.f.: -5*x^2 / ((x-1)*(2*x-1)*(6*x-1)). - Colin Barker, Apr 18 2014
MAPLE
A241275:=n->9*6^(n-2) - 5*2^(n-2) + 1; seq(A241275(n), n=0..40); # Wesley Ivan Hurt, Apr 19 2014
MATHEMATICA
CoefficientList[Series[-5 x^2/((x - 1) (2 x - 1) (6 x - 1)), {x, 0, 40}], x] (* Vincenzo Librandi, Apr 19 2014 *)
LinearRecurrence[{9, -20, 12}, {0, 0, 5}, 30] (* Harvey P. Dale, Oct 10 2017 *)
PROG
(PARI) a(n)=if(n<=0, 0, a(n-1)*6+5*(2^(n-1)-1))
for(n=0, 100, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Kival Ngaokrajang, Apr 18 2014
EXTENSIONS
Typo in DATA fixed by Colin Barker, Apr 18 2014
STATUS
approved