login
A241283
T(n,k)=Number of nXk 0..3 arrays with no element equal to one plus the sum of elements to its left or zero plus the sum of the elements above it or one plus the sum of the elements diagonally to its northwest or one plus the sum of the elements antidiagonally to its northeast, modulo 4
12
2, 3, 4, 4, 3, 10, 7, 5, 9, 24, 10, 13, 41, 36, 56, 15, 17, 126, 236, 139, 132, 24, 35, 224, 773, 1615, 532, 312, 35, 90, 934, 1800, 6783, 12356, 2111, 736, 54, 141, 2741, 16843, 20717, 77955, 96171, 8473, 1736, 83, 288, 5225, 54167, 451318, 309657, 1009773
OFFSET
1,1
COMMENTS
Table starts
....2......3........4..........7..........10............15...........24
....4......3........5.........13..........17............35...........90
...10......9.......41........126.........224...........934.........2741
...24.....36......236........773........1800.........16843........54167
...56....139.....1615.......6783.......20717........451318......1543713
..132....532....12356......77955......309657......15616828.....60486552
..312...2111....96171....1009773.....5423164.....730435588...2949336562
..736...8473...761754...14440961...113305157...40083129145.193899487190
.1736..34053..6079503..217830879..2759021846.2390612565177
.4096.136880.48655224.3381893022.75062814060
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 2*a(n-1) +2*a(n-3)
k=2: [order 31]
Empirical for row n:
n=1: a(n)=a(n-2)+2*a(n-3)
n=2: [order 17] for n>18
EXAMPLE
Some solutions for n=4 k=4
..3..3..2..3....3..2..3..2....3..2..3..2....3..3..2..3....3..3..2..3
..2..1..1..0....0..3..2..3....2..1..2..3....2..1..3..2....2..1..1..0
..2..2..0..0....2..0..2..0....0..0..2..0....3..1..2..2....2..2..2..2
..2..0..0..2....0..0..0..3....2..0..2..0....3..2..1..2....2..0..0..2
CROSSREFS
Column 1 is A052912
Row 1 is A159288(n+1)
Sequence in context: A290097 A364392 A366681 * A274095 A263408 A109870
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Apr 18 2014
STATUS
approved