login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A159288
Expansion of (1 + x + x^2)/(1 - x^2 - 2*x^3).
20
1, 1, 2, 3, 4, 7, 10, 15, 24, 35, 54, 83, 124, 191, 290, 439, 672, 1019, 1550, 2363, 3588, 5463, 8314, 12639, 19240, 29267, 44518, 67747, 103052, 156783, 238546, 362887, 552112, 839979, 1277886, 1944203, 2957844, 4499975, 6846250, 10415663
OFFSET
0,3
COMMENTS
A floretion-generated sequence: 'i + 0.5('ij' + 'ik' + 'ji' + 'jk' + 'ki' + 'kj')
Starting with offset 1 the sequence appears to be the INVERT transform of (1, 1, 0, -1, 1, 0, -1, 1, 0, -1, 1, 0, ...). - Gary W. Adamson, Aug 27 2016
FORMULA
a(n) = A159287(n) + A159287(n+1) + A159287(n+2). - R. J. Mathar, Apr 10 2009
a(n) = a(n-2) + 2*a(n-3) for n>2. - Colin Barker, Apr 29 2019
a(n)= A052947(n) + A052947(n-1) +A052947(n-2). - R. J. Mathar, Mar 23 2023
MATHEMATICA
CoefficientList[Series[(1+x+x^2)/(1-x^2-2x^3), {x, 0, 50}], x] (* Harvey P. Dale, Mar 09 2011 *)
LinearRecurrence[{0, 1, 2}, {1, 1, 2}, 50] (* G. C. Greubel, Jun 27 2018 *)
PROG
(PARI) a(n)=([0, 1, 0; 0, 0, 1; 2, 1, 0]^n*[1; 1; 2])[1, 1] \\ Charles R Greathouse IV, Aug 27 2016
(PARI) Vec((1 + x + x^2) / (1 - x^2 - 2*x^3) + O(x^40)) \\ Colin Barker, Apr 29 2019
(Magma) I:=[1, 1, 2]; [n le 3 select I[n] else Self(n-2) + 2*Self(n-2): n in [1..30]]; // G. C. Greubel, Jun 27 2018
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Creighton Dement, Apr 08 2009
STATUS
approved