The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A013982 Expansion of 1/(1-x^2-x^3-x^4-x^5). 3
 1, 0, 1, 1, 2, 3, 4, 7, 10, 16, 24, 37, 57, 87, 134, 205, 315, 483, 741, 1137, 1744, 2676, 4105, 6298, 9662, 14823, 22741, 34888, 53524, 82114, 125976, 193267, 296502, 454881, 697859, 1070626, 1642509 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS Number of compositions of n into parts p where 2 <= p < = 5. [Joerg Arndt, Jun 24 2013] LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..1000 R. Mullen, On Determining Paint by Numbers Puzzles with Nonunique Solutions, JIS 12 (2009) 09.6.5 J. D. Opdyke, A unified approach to algorithms generating unrestricted.., J. Math. Model. Algor. 9 (2010) 53-97, Table 7 Index entries for linear recurrences with constant coefficients, signature (0,1,1,1,1). FORMULA a(n) = a(n-5) + a(n-4) + a(n-3) + a(n-2). - Jon E. Schoenfield, Aug 07 2006 MATHEMATICA CoefficientList[Series[1/(1-x^2-x^3-x^4-x^5), {x, 0, 40}], x] (* or *) LinearRecurrence[{0, 1, 1, 1, 1}, {1, 0, 1, 1, 2}, 40] (* Harvey P. Dale, Sep 19 2011 *) PROG (PARI) Vec(1/(1-x^2-x^3-x^4-x^5)+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012 (MAGMA) m:=40; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/(1-x^2-x^3-x^4-x^5))); // Vincenzo Librandi, Jun 24 2013 CROSSREFS Sequence in context: A270659 A159288 A033320 * A202411 A293161 A235648 Adjacent sequences:  A013979 A013980 A013981 * A013983 A013984 A013985 KEYWORD nonn,easy AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 13 05:02 EDT 2021. Contains 343836 sequences. (Running on oeis4.)