OFFSET
0,5
COMMENTS
Number of compositions of n into parts p where 2 <= p < = 6. [Joerg Arndt, Jun 24 2013]
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
R. Mullen, On Determining Paint by Numbers Puzzles with Nonunique Solutions, JIS 12 (2009) 09.6.5.
Index entries for linear recurrences with constant coefficients, signature (0,1,1,1,1,1).
FORMULA
a(n) = a(n-6) + a(n-5) + a(n-4) + a(n-3) + a(n-2). - Jon E. Schoenfield, Aug 07 2006
G.f.: 1 / ( (1+x)*(1-x^5-x^3-x)). a(n)+a(n+1) = A060961(n). - R. J. Mathar, Mar 22 2011
MATHEMATICA
CoefficientList[Series[1 / (1 - x^2 - x^3 - x^4 - x^5 - x^6), {x, 0, 50}], x] (* Vincenzo Librandi, Jun 23 2013 *)
LinearRecurrence[{0, 1, 1, 1, 1, 1}, {1, 0, 1, 1, 2, 3}, 50] (* Harvey P. Dale, Dec 31 2013 *)
PROG
(PARI) Vec(1/(1-x^2-x^3-x^4-x^5-x^6)+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012
(Magma) m:=40; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/(1-x^2-x^3-x^4-x^5-x^6))); // Vincenzo Librandi, Jun 24 2013
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved