login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A013983
Expansion of 1/(1-x^2-x^3-x^4-x^5-x^6).
3
1, 0, 1, 1, 2, 3, 5, 7, 12, 18, 29, 45, 71, 111, 175, 274, 431, 676, 1062, 1667, 2618, 4110, 6454, 10133, 15911, 24982, 39226, 61590, 96706, 151842, 238415, 374346, 587779, 922899, 1449088, 2275281, 3572527
OFFSET
0,5
COMMENTS
Number of compositions of n into parts p where 2 <= p < = 6. [Joerg Arndt, Jun 24 2013]
FORMULA
a(n) = a(n-6) + a(n-5) + a(n-4) + a(n-3) + a(n-2). - Jon E. Schoenfield, Aug 07 2006
G.f.: 1 / ( (1+x)*(1-x^5-x^3-x)). a(n)+a(n+1) = A060961(n). - R. J. Mathar, Mar 22 2011
MATHEMATICA
CoefficientList[Series[1 / (1 - x^2 - x^3 - x^4 - x^5 - x^6), {x, 0, 50}], x] (* Vincenzo Librandi, Jun 23 2013 *)
LinearRecurrence[{0, 1, 1, 1, 1, 1}, {1, 0, 1, 1, 2, 3}, 50] (* Harvey P. Dale, Dec 31 2013 *)
PROG
(PARI) Vec(1/(1-x^2-x^3-x^4-x^5-x^6)+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012
(Magma) m:=40; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/(1-x^2-x^3-x^4-x^5-x^6))); // Vincenzo Librandi, Jun 24 2013
CROSSREFS
First differences of A023437.
Sequence in context: A048808 A263358 A239915 * A257863 A169986 A218021
KEYWORD
nonn,easy
AUTHOR
STATUS
approved