login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A013986
Expansion of 1/(1-x^2-x^3-x^4-x^5-x^6-x^7-x^8-x^9).
1
1, 0, 1, 1, 2, 3, 5, 8, 13, 21, 33, 54, 86, 139, 223, 359, 577, 928, 1492, 2399, 3858, 6203, 9975, 16039, 25791, 41471, 66685, 107228, 172421, 277250, 445813, 716860, 1152698, 1853519, 2980426, 4792474, 7706215
OFFSET
0,5
COMMENTS
Number of compositions of n into parts p where 2 <= p < = 9. [Joerg Arndt, Jun 24 2013]
FORMULA
a(0)=1, a(1)=0, a(2)=1, a(3)=1, a(4)=2, a(5)=3, a(6)=5, a(7)=8, a(8)=13, a(n)=a(n-2)+a(n-3)+a(n-4)+a(n-5)+a(n-6)+a(n-7)+a(n-8)+a(n-9). - Harvey P. Dale, Dec 17 2013
MATHEMATICA
CoefficientList[Series[1 / (1 - x^2 - x^3 - x^4 - x^5 - x^6 - x^7 - x^8 - x^9), {x, 0, 40}], x] (* Vincenzo Librandi, Jun 24 2013 *)
CoefficientList[Series[1/(1-Total[x^Range[2, 9]]), {x, 0, 40}], x] (* or *) LinearRecurrence[{0, 1, 1, 1, 1, 1, 1, 1, 1}, {1, 0, 1, 1, 2, 3, 5, 8, 13}, 40] (* Harvey P. Dale, Dec 17 2013 *)
PROG
(Magma) m:=40; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/(1-x^2-x^3-x^4-x^5-x^6-x^7-x^8-x^9))); // Vincenzo Librandi, Jun 24 2013
CROSSREFS
See A000045 for the Fibonacci numbers.
Sequence in context: A309676 A280198 A175712 * A121343 A321021 A236768
KEYWORD
nonn,easy
AUTHOR
STATUS
approved