

A013987


Expansion of 1/(1x^2x^3x^4x^5x^6x^7x^8x^9x^10).


1



1, 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 54, 88, 141, 228, 367, 592, 954, 1538, 2479, 3996, 6441, 10383, 16736, 26978, 43486, 70097, 112991, 182134, 293587, 473242, 762833, 1229634, 1982084, 3194982, 5150088, 8301584, 13381575, 21570168, 34769609, 56046190
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,5


COMMENTS

Number of compositions of n into parts p where 2 <= p < = 10. [Joerg Arndt, Jun 24 2013]


LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000
R. Mullen, On Determining Paint by Numbers Puzzles with Nonunique Solutions, JIS 12 (2009) 09.6.5


MATHEMATICA

CoefficientList[Series[1 / (1  x^2  x^3  x^4  x^5  x^6  x^7  x^8  x^9  x^10), {x, 0, 40}], x] (* Vincenzo Librandi, Jun 24 2013 *)


PROG

(MAGMA) m:=40; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/(1x^2x^3x^4x^5x^6x^7x^8x^9x^10))); // Vincenzo Librandi, Jun 24 2013


CROSSREFS

See A000045 for the Fibonacci numbers.
Sequence in context: A236768 A023439 A147660 * A261607 A261575 A261606
Adjacent sequences: A013984 A013985 A013986 * A013988 A013989 A013990


KEYWORD

nonn,easy


AUTHOR

N. J. A. Sloane.


STATUS

approved



