The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A147660 Coefficient expansion of toral of inverse of low ratio (1.6081283851873882) Pisot Polynomial: a(n)=Coefficient_Expansion(1/( -1 + x^2 - x^9 - x^10 + x^11)). 1
 1, 1, 2, 3, 5, 8, 13, 21, 34, 54, 87, 140, 225, 362, 582, 936, 1505, 2420, 3892, 6259, 10065, 16186, 26029, 41858, 67313, 108248, 174077, 279938, 450176, 723941, 1164190, 1872167, 3010685, 4841568, 7785863, 12520667, 20134840, 32379408 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS The next 1 + x^2 - x^10 - x^11 + x^12, is not Pisot, so x^11 is the limit that sequence of polynomials below the Golden mean ratio. LINKS FORMULA a(n)=Coefficient_Expansion(1/( -1 + x^2 - x^9 - x^10 + x^11)). MATHEMATICA f[x_] = -1 + x^2 - x^9 - x^10 + x^11; g[x] = ExpandAll[x^11*f[1/x]]; a = Table[SeriesCoefficient[Series[1/g[x], {x, 0, 50}], n], {n, 0, 50}] CROSSREFS Sequence in context: A321021 A236768 A023439 * A013987 A261607 A261575 Adjacent sequences:  A147657 A147658 A147659 * A147661 A147662 A147663 KEYWORD nonn AUTHOR Roger L. Bagula, Nov 09 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 16 00:49 EDT 2021. Contains 343937 sequences. (Running on oeis4.)