login
A236768
A recurrence relation conditioned on the primality of the preceding terms.
1
1, 2, 3, 5, 8, 13, 21, 34, 13, 47, 60, 107, 167, 274, 441, 167, 608, 775, 167, 942, 1109, 2051, 3160, 1109, 4269, 5378, 1109, 6487, 7596, 1109, 8705, 9814, 1109, 10923, 12032, 1109, 13141, 14250, 1109, 15359, 16468, 31827, 15359, 47186, 62545, 15359, 77904, 93263, 171167, 264430
OFFSET
0,2
COMMENTS
This is like the Fibonacci sequence but subtraction replaces addition when neither of the preceding two terms are prime numbers.
FORMULA
a(0) = 1, a(1) = 2, a(n) = a(n-1) + a(n-2) unless both a(n-1) and a(n-2) are composite, then a(n) = a(n-1) - a(n-2).
EXAMPLE
a(6) = 21 because a(5)=13 is prime and 13 + 8 = 21.
a(7) = 34 because a(5) is prime and 21 + 13 = 34.
a(8) = 13 because neither a(6) nor a(7) is prime and 34 - 21 = 13.
MATHEMATICA
modFibo[0] := 1; modFibo[1] := 2; modFibo[n_] := modFibo[n] = modFibo[n - 1] + (-1)^(Boole[Not[PrimeQ[modFibo[n - 1]] || PrimeQ[modFibo[n - 2]]]])modFibo[n - 2]; Table[modFibo[n], {n, 0, 49}] (* Alonso del Arte, Jan 31 2014 *)
CROSSREFS
Sequence in context: A013986 A121343 A321021 * A374742 A023439 A147660
KEYWORD
nonn,easy
AUTHOR
Stephen McDonald, Jan 30 2014
STATUS
approved