login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A236765
Number of ways to write n = k^2 + m with k > 1 and m > 1 such that sigma(k^2) + prime(m) - 1 is prime, where sigma(j) denotes the sum of all positive divisors of j.
1
0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 0, 2, 3, 1, 3, 2, 1, 2, 2, 3, 2, 4, 3, 2, 3, 2, 2, 3, 3, 2, 2, 2, 3, 4, 4, 3, 4, 4, 1, 3, 4, 2, 2, 5, 3, 3, 4, 4, 3, 1, 5, 3, 4, 3, 4, 5, 4, 3, 1, 5, 2, 6, 4, 3, 4, 2, 1, 5, 4, 7, 4, 4, 3, 1, 3, 1, 4, 4, 4, 2, 5, 6, 3, 6, 5, 5, 1, 4, 5, 5, 4, 3, 6
OFFSET
1,13
COMMENTS
Conjecture: (i) If n > 6 is not equal to 18, then a(n) > 0.
(ii) Any integer n > 14 can be written as p + q with q > 0 such that p, p + 6 and prime(p) + sigma(q) are all prime.
MAPLE
a(10) = 1 since 10 = 2^2 + 6 with sigma(2^2) + prime(6) - 1 = 7 + 13 - 1 = 19 prime.
a(253) = 1 since 253 = 15^2 + 28 with sigma(15^2) + prime(28) - 1 = 403 + 107 - 1 = 509 prime.
MATHEMATICA
p[n_, k_]:=PrimeQ[DivisorSigma[1, k^2]+Prime[n-k^2]-1]
a[n_]:=If[n<6, 0, Sum[If[p[n, k], 1, 0], {k, 2, Sqrt[n-2]}]]
Table[a[n], {n, 1, 100}]
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Jan 30 2014
STATUS
approved