OFFSET
1,13
COMMENTS
Conjecture: (i) If n > 6 is not equal to 18, then a(n) > 0.
(ii) Any integer n > 14 can be written as p + q with q > 0 such that p, p + 6 and prime(p) + sigma(q) are all prime.
LINKS
Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
MAPLE
a(10) = 1 since 10 = 2^2 + 6 with sigma(2^2) + prime(6) - 1 = 7 + 13 - 1 = 19 prime.
a(253) = 1 since 253 = 15^2 + 28 with sigma(15^2) + prime(28) - 1 = 403 + 107 - 1 = 509 prime.
MATHEMATICA
p[n_, k_]:=PrimeQ[DivisorSigma[1, k^2]+Prime[n-k^2]-1]
a[n_]:=If[n<6, 0, Sum[If[p[n, k], 1, 0], {k, 2, Sqrt[n-2]}]]
Table[a[n], {n, 1, 100}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Jan 30 2014
STATUS
approved