login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A236766
Numbers n such that n^4 +/- n +/- 1 are prime for all four possibilities.
1
6, 9, 7266, 115131, 380529, 536646, 636609, 818526, 922734, 1389015, 1660119, 2045415, 2085726, 2262420, 2469396, 2722260, 2836374, 2954250, 3146904, 3614226, 3949770, 4062465, 4110834, 4211499, 4400100, 5081055, 5324424, 5434794, 5436090
OFFSET
1,1
EXAMPLE
380529^4+380529+1 (20967711831335262645811), 380529^4+380529-1 (20967711831335262645809), 380529^4-380529+1 (20967711831335261884753), and 380529^4-380529-1 (20967711831335261884751) are all prime. Thus, 380529 is a member of this sequence.
MATHEMATICA
Select[Range[55*10^5], AllTrue[#^4+{(#-1), (#+1), (-#-1), (-#+1)}, PrimeQ]&] (* Harvey P. Dale, Nov 02 2024 *)
PROG
(Python)
import sympy
from sympy import isprime
{print(n) for n in range(10**7) if isprime(n**4+n+1) and isprime(n**4-n+1) and isprime(n**4+n-1) and isprime(n**4-n-1)}
(PARI)
for(n=1, 5000000, if(isprime(n^4+n+1)&&isprime(n^4-n+1)&&isprime(n^4+n-1)&&isprime(n^4-n-1), print1(n, ", "))) \\ Colin Barker, Jan 31 2014
CROSSREFS
Intersection of A236759, A049408, A236761 and A126424.
Sequence in context: A061110 A110460 A159190 * A004075 A202951 A316633
KEYWORD
nonn
AUTHOR
Derek Orr, Jan 30 2014
STATUS
approved