login
A236766
Numbers n such that n^4 +/- n +/- 1 are prime for all four possibilities.
1
6, 9, 7266, 115131, 380529, 536646, 636609, 818526, 922734, 1389015, 1660119, 2045415, 2085726, 2262420, 2469396, 2722260, 2836374, 2954250, 3146904, 3614226, 3949770, 4062465, 4110834, 4211499, 4400100, 5081055, 5324424, 5434794, 5436090
OFFSET
1,1
EXAMPLE
380529^4+380529+1 (20967711831335262645811), 380529^4+380529-1 (20967711831335262645809), 380529^4-380529+1 (20967711831335261884753), and 380529^4-380529-1 (20967711831335261884751) are all prime. Thus, 380529 is a member of this sequence.
MATHEMATICA
Select[Range[55*10^5], AllTrue[#^4+{(#-1), (#+1), (-#-1), (-#+1)}, PrimeQ]&] (* Harvey P. Dale, Nov 02 2024 *)
PROG
(Python)
import sympy
from sympy import isprime
{print(n) for n in range(10**7) if isprime(n**4+n+1) and isprime(n**4-n+1) and isprime(n**4+n-1) and isprime(n**4-n-1)}
(PARI)
for(n=1, 5000000, if(isprime(n^4+n+1)&&isprime(n^4-n+1)&&isprime(n^4+n-1)&&isprime(n^4-n-1), print1(n, ", "))) \\ Colin Barker, Jan 31 2014
CROSSREFS
Intersection of A236759, A049408, A236761 and A126424.
Sequence in context: A061110 A110460 A159190 * A004075 A202951 A316633
KEYWORD
nonn
AUTHOR
Derek Orr, Jan 30 2014
STATUS
approved